Biological Invasions

, Volume 19, Issue 1, pp 239–254 | Cite as

Mapping an invasive bryophyte species using hyperspectral remote sensing data

  • Sandra SkowronekEmail author
  • Michael Ewald
  • Maike Isermann
  • Ruben Van De Kerchove
  • Jonathan Lenoir
  • Raf Aerts
  • Jens Warrie
  • Tarek Hattab
  • Olivier Honnay
  • Sebastian Schmidtlein
  • Duccio Rocchini
  • Ben Somers
  • Hannes Feilhauer
Original Paper


Reliable distribution maps are crucial for the management of invasive plant species. An alternative to traditional field surveys is the use of remote sensing data, which allows coverage of large areas. However, most remote sensing studies on invasive plant species focus on mapping large stands of easily detectable study species. In this study, we used hyperspectral remote sensing data in combination with field data to derive a distribution map of an invasive bryophyte species, Campylopus introflexus, on the island of Sylt in Northern Germany. We collected plant cover data on 57 plots to calibrate the model and presence/absence data of C. introflexus on another 150 plots for independent validation. We simultaneously acquired airborne hyperspectral (APEX) images during summer 2014, providing 285 spectral bands. We used a Maxent modelling approach to map the distribution of C. introflexus. Although C. introflexus is a small and inconspicuous species, we were able to map its distribution with an overall accuracy of 75 %. Reducing the sampling effort from 57 to 7 plots, our models performed fairly well until sampling effort dropped below 12 plots. The model predicts that C. introflexus is present in about one quarter of the pixels in our study area. The highest percentage of C. introflexus is predicted in the dune grassland. Our findings suggest that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.


Campylopus introflexus Dunes Heathland Imaging spectroscopy Maxent Moss 



This study is part of the ERA-Net BiodivERsA project DIARS (Detection of Invasive plant species and Assessment of their impact on ecosystem properties through Remote Sensing) with the national funders ANR (Agence Nationale de la Recherché), BelSPO (Belgian Federal Science Policy Office) and DFG (Deutsche Forschungsgemeinschaft). Sandra Skowronek is funded through DFG research grant FE 1331/3-1. The authors would like to thank the nature conservation authority of Northern Friesland and the private land owners for granting us permission to conduct research in the protected dune heathlands on the island of Sylt. Many thanks to Emily Jane Francis and Carol Garzon for proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andrew M, Ustin S (2008) The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens Environ 112:4301–4317. doi: 10.1016/j.rse.2008.07.016 CrossRefGoogle Scholar
  2. Asner GP (1997) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234CrossRefGoogle Scholar
  3. Asner GP (2013) Biological diversity mapping comes of age. Remote Sens 5:374–376. doi: 10.3390/rs5010374 CrossRefGoogle Scholar
  4. Atkinson JT, Ismail R, Robertson M (2014) Mapping Bugweed (Solanum mauritianum) infestations in Pinus patula plantations using hyperspectral imagery and support vector machines. Sel Top Appl Earth Obs Remote Sens IEEE J 7:17–28. doi: 10.1109/JSTARS.2013.2257988 CrossRefGoogle Scholar
  5. Baldeck CA, Asner GP (2014) Improving remote species identification through efficient training data collection. Remote Sens 6:2682–2698. doi: 10.3390/rs6042682 CrossRefGoogle Scholar
  6. Bartels M (2013) Die wanderdünen auf sylt—von der bekämpfung bis zum schutz eines naturphänomens. In: Collet D, Jakubowski-Tiessen M (eds) Schauplätze der umweltgeschichte in Schleswig-Holstein. Universitätsverlag Göttingen, Göttingen, pp 17–28Google Scholar
  7. Benkert D (1971) Campylopus introflexus (Hedw.) auch in Mitteleuropa. Feddes Repert 81:651–654CrossRefGoogle Scholar
  8. BGR (2009) Bodenübersichtskarte 1: 200 000. Bundesamt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  9. Biermann R, Daniels FJA (1997) Changes in a lichen-rich dry sand grassland vegetation with special reference to lichen synusiae and Campylopus introflexus. Phytocoenologia 27:257–273. doi: 10.1127/phyto/27/1997/257 CrossRefGoogle Scholar
  10. Bivand R, Keitt T, Rowlingson B (2015) Rgdal: bindings for the geospatial data. Abstraction library. R Package Version 1.0-7.
  11. Boxel JH, Jungerius PD, Kieffer N, Hampele N (1997) Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes. J Coast Conserv 3:57–62. doi: 10.1007/BF02908179 CrossRefGoogle Scholar
  12. Bradley BA (2013) Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invasions 16:1411–1425. doi: 10.1007/s10530-013-0578-9 CrossRefGoogle Scholar
  13. Düll R, Meinunger L (1989) Deutschlands moose. IDH-Verlag, Bad MünstereifelGoogle Scholar
  14. DWD (2015) cdc_node @ In: Clim. data Cent. Accessed 25 Jan 2016
  15. Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x CrossRefGoogle Scholar
  16. Essl F, Lambdon PW (2009) Alien bryophytes and lichens of Europe. In: Handbook of Alien Species in Europe. Springer, pp 29–41Google Scholar
  17. Essl F, Steinbauer K, Dullinger S et al (2014) Little, but increasing evidence of impacts by alien bryophytes. Biol Invasions 16:1175–1184. doi: 10.1007/s10530-013-0572-2 CrossRefGoogle Scholar
  18. Fitzpatrick MC, Preisser EL, Ellison AM, Elkiton JS (2009) Observer bias and the detection of low-density populations. Ecol Appl 19:1673–1679. doi: 10.1890/09-0265.1 CrossRefPubMedGoogle Scholar
  19. Frahm J-P (1971) Campylopus introflexus (Hedw.) Brid. Neu für Dänemark Lindbergia 1:117–118Google Scholar
  20. Frahm J-P (1972) Die Ausbreitung von Campylopus introflexus (Hedw.) Brid. in Mitteleuropa. Herzogia 2:317–330Google Scholar
  21. Geelen L, Salman A, Kuipers M (2015) Dynamic dunes 2015: daring solutions for Natura 2000 challenges. Waternet, AmsterdamGoogle Scholar
  22. Hahn D (2006) Neophyten der Ostfriesischen Inseln. Dissertation, University of HannoverGoogle Scholar
  23. Hasse T (2007) Campylopus introflexus invasion in a dune grassland: succession, disturbance and relevance of existing plant invader concepts. Herzogia 20:305–315Google Scholar
  24. He KS, Rocchini D, Neteler M, Nagendra H (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib 17:381–392. doi: 10.1111/j.1472-4642.2011.00761.x CrossRefGoogle Scholar
  25. Hijmans RJ (2015) Raster: geographic data analysis and modeling. R Package Version 2.4-20.
  26. Huang C, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9:4869–4889. doi: 10.3390/s90604869 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ishii J, Washitani I (2013) Early detection of the invasive alien plant Solidago altissima in moist tall grassland using hyperspectral imagery. Int J Remote Sens 34:5926–5936. doi: 10.1080/01431161.2013.799790 CrossRefGoogle Scholar
  28. Ketner-Oostra R, Sýkora KV (2000) Vegetation succession and lichen diversity on dry coastal calcium- poor dunes and the impact of management experiments. J Coast Conserv 6:191–206. doi: 10.1007/BF02913815 CrossRefGoogle Scholar
  29. Ketner-Oostra R, Sýkora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia 34:521–549. doi: 10.1127/0340-269X/2004/0034-0521 CrossRefGoogle Scholar
  30. Klinck J (2009) The alien invasive moss Campylopus introflexus in the Danish coastal dune system. Master Thesis, Copenhagen UniversityGoogle Scholar
  31. Kumar L, Schmidt K, Dury S, Skidmore A (2002) Imaging spectrometry and vegetation science. In: FD van der Meer, SM de Jong (eds) Imaging spectrometry. Springer, Netherlands, pp 111–155CrossRefGoogle Scholar
  32. Lass LW, Prather TS, Glenn NF et al (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251. doi: 10.1614/WS-04-044R2 CrossRefGoogle Scholar
  33. Leguan P (2012) Kartierung der salzwiesen und dünen an der westküste von Schleswig-Holstein 2011–2012—biotopkartierung sylt. Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR), HamburgGoogle Scholar
  34. Mateo G, Broennimann O, Petitpierre B et al (2014) What is the potential of spread in invasive bryophytes ? Ecography 38(5):1–8. doi: 10.1111/ecog.01014 Google Scholar
  35. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop) 36:1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x CrossRefGoogle Scholar
  36. Mirik M, Ansley RJ, Steddom K et al (2013) Remote distinction of a noxious weed (Musk Thistle: Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier. Remote Sens 5:612–630. doi: 10.3390/rs5020612 CrossRefGoogle Scholar
  37. Neu F (1968) Das mediterran-atlantische Laubmoos Camyplopus introflexus im Münsterland. Natur und Heimat 28:124–125Google Scholar
  38. Ollinger SV (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189:375–394. doi: 10.1111/j.1469-8137.2010.03536.x CrossRefPubMedGoogle Scholar
  39. Petersen J, Kers B, Stock M (2014) TMAP—Typology of coastal vegetation in the wadden sea area. Wadden Sea Ecosyst 32. Common Wadden Sea Secretariat (CWSS), WilhelmshavenGoogle Scholar
  40. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference machine learning, pp 655–662. doi: 10.1145/1015330.1015412
  41. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  42. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  43. Rabitsch W, Isermann M, Karasch P, Nehring S (2016) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Moose, Pilze und Flechten, BfN-Skripten (in prep.)Google Scholar
  44. Richards PW (1963) Campylopus introflexus (Hedw.) Brid. and C. polytrichoides De Not. in the British Isles; a preliminary account. Trans Br Bryol Soc 4:404–417CrossRefGoogle Scholar
  45. Schirmel J, Timler L, Buchholz S (2011) Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic sea. Biol Invasions 13:605–620. doi: 10.1007/s10530-010-9852-2 CrossRefGoogle Scholar
  46. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi: 10.1016/j.tree.2012.07.013 CrossRefPubMedGoogle Scholar
  47. Sparrius LB, Kooijman AM (2011) Invasiveness of Campylopus introflexus in drift sands depends on nitrogen deposition and soil organic matter. Appl Veg Sci 14:221–229. doi: 10.1111/j.1654-109X.2010.01120.x CrossRefGoogle Scholar
  48. Sparrius LB, Kooijman AM (2012) Invasie van Grijs kronkelsteeltje in kustduinen en stuifzanden. Rapport nr. 2012/OBN156-DKDZ. Ministerie van EZ, DriebergenGoogle Scholar
  49. Starfinger U, Kowarik I, Isermann M (2003) Campylopus introflexus. Neobiota. Accessed 25 Jan 2016
  50. Underwood E, Ustin S, DiPietro D (2003) Mapping nonnative plants using hyperspectral imagery. Remote Sens Environ 86:150–161. doi: 10.1016/S0034-4257(03)00096-8 CrossRefGoogle Scholar
  51. van Turnhout C (2005) Het verdwijnen van de Duinpieper als broedvogel uit Nederland en Noordwest-Europa. Limosa 78:1–14Google Scholar
  52. VITO (2014) APEX 2014—SYLT campaign data delivery report. VITO, MolGoogle Scholar
  53. Vogels J, Nijssen M, Verberk W, Esselink H (2005) Effects of moss-encroachment by Campylopus introflexus on soil-entomofauna of dry-dune. Proc Neth Entmol Soc Meet 16:71–80Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sandra Skowronek
    • 1
    Email author
  • Michael Ewald
    • 2
  • Maike Isermann
    • 3
  • Ruben Van De Kerchove
    • 4
  • Jonathan Lenoir
    • 5
  • Raf Aerts
    • 6
  • Jens Warrie
    • 6
  • Tarek Hattab
    • 5
  • Olivier Honnay
    • 6
  • Sebastian Schmidtlein
    • 2
  • Duccio Rocchini
    • 7
  • Ben Somers
    • 8
  • Hannes Feilhauer
    • 1
  1. 1.Institute of GeographyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Geography and GeoecologyKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Working Group Vegetation Ecology and Conservation BiologyUniversity of BremenBremenGermany
  4. 4.VITO (Flemish Institute for Technological Research)MolBelgium
  5. 5.UR “Ecologie et dynamique des systèmes anthropisées” (EDYSAN, FRE3498 CNRS-UPJV)Université de Picardie Jules VerneAmiens Cedex 1France
  6. 6.Ecology, Evolution and Biodiversity Conservation SectionKU LeuvenLouvainBelgium
  7. 7.Department of Biodiversity and Molecular EcologyFondazione Edmund MachSan Michele all’AdigeItaly
  8. 8.Department of Earth and Environmental Sciences, Division of Forest, Nature and LandscapeKU LeuvenLeuvenBelgium

Personalised recommendations