Biological Invasions

, Volume 18, Issue 12, pp 3535–3546 | Cite as

Competition, niche opportunities and the successful invasion of natural habitats

  • Miquel Vall-lloseraEmail author
  • Francesc Llimona
  • Miquel de Cáceres
  • Sergi Sales
  • Daniel Sol
Original Paper


Fundamental to the establishment of exotic species in natural environments is that the invader finds an appropriate niche in the novel environment. However, it is currently unclear whether this is achieved by competitively displacing native species from their niches and/or by exploiting niche opportunities not monopolized by native species. Combining phylogenetic analyses with field observations and an ecological opportunity experiment, we here contrasted the competition and niche opportunity hypotheses as explanations for the success of an alien passerine, the Red-billed Leiothrix Leiothrix lutea, in a forest reserve from the Western Mediterranean basin. The invasion of Leiothrix provided a rare opportunity to assess the relative importance of each hypothesis because the avian community of the reserve has been systematically surveyed for the last 27 years, and hence species abundance data were available before and after the irruption of the invader. The invader established itself with relatively little resistance or consequences for native species, reflecting the opportunist-generalist nature of both the invader and the invaded native community. Although we cannot completely discard a role of competition, these results yield greater support to the crucial importance of niche opportunities to invade natural environments.


Alien species Biotic resistance Community specialization Foraging niche Phylogenetic community structure Population trends 



We thank Gabriel Garcia-Peña, Oriol Lapiedra, César González-Lagos, Joan Maspons, Miguel Clavero, Joan Pino and Miguel Verdú for useful comments on the manuscript, and Xavier Espadaler for providing references. This research was supported by a DURSI scholarship of the Generalitat de Catalunya and the European Social Fund 2005SGR00090 to MV, and by funds from the Spanish Ministry of Education and Science (‘Proyecto de Investigación’ CGL2010-21838 and ‘Consolider-Ingenio Montes’ CSD2008-00040) to DS.

Supplementary material

10530_2016_1246_MOESM1_ESM.pdf (613 kb)
Online Resource 1: Supplementary figures (PDF 614 kb)
10530_2016_1246_MOESM2_ESM.pdf (143 kb)
Online Resource 2: Supplementary tables (PDF 143 kb)


  1. Amano HE, Eguchi K (2002) Foraging niches of introduced Red-billed Leiothrix and native species in Japan. Ornithol Sci 1:123–131. doi: 10.2326/osj.1.123 CrossRefGoogle Scholar
  2. Bartomeus I, Sol D, Pino J et al (2012) Deconstructing the native-exotic richness relationship in plants. Glob Ecol Biogeogr 21:524–533. doi: 10.1111/j.1466-8238.2011.00708.x CrossRefGoogle Scholar
  3. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett. doi: 10.1098/rsbl.2015.0623 PubMedGoogle Scholar
  4. Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47. doi: 10.1007/BF00395696 CrossRefGoogle Scholar
  5. Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458CrossRefGoogle Scholar
  6. Case TJ (1996) Global patterns in the establishment and distribution of exotic birds. Biol Conserv 78:69–96CrossRefGoogle Scholar
  7. Case T, Bolger D, Petren K (1994) Invasions and competitive displacement among house geckos in the tropical Pacific. Ecology 75:464–477CrossRefGoogle Scholar
  8. Clarabuch O (2011) Anuari d’Ornitologia de Catalunya, 2009. Institut Català d’Ornitologia (ICO), BarcelonaGoogle Scholar
  9. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228. doi: 10.1890/080216 CrossRefGoogle Scholar
  10. Clements JF, Schulenberg TS, Iliff MJ et al (2011) The clements checklist of birds of the world: version 6.6. Cornell University Press, Ithaca, New YorkGoogle Scholar
  11. Colin JB, Burgess ND, Hill DA, Mustoe S (1992) Bird census techniques. BTO-RSPB Academic Press, LondonGoogle Scholar
  12. Daehler CC (2001) Darwin’ s naturalization hypothesis revisited. Am Nat 158:324–330CrossRefPubMedGoogle Scholar
  13. Davies T (2006) Evolutionary ecology: when relatives cannot live together. Curr Biol 16:R645–R647. doi: 10.1016/j.cub.2006.07.026 CrossRefPubMedGoogle Scholar
  14. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  15. De Caceres M, Sol D, Lapiedra O, Legendre P (2011) A framework for estimating niche metrics using the resemblance between qualitative resources. Oikos 120:1341–1350. doi: 10.1111/J.1600-0706.2011.19679.x CrossRefGoogle Scholar
  16. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2004) Handbook of the birds of the world. Cotingas to pipits and wagtails, vol 9. Lynx Editions, BarcelonaGoogle Scholar
  17. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2005) Handbook of the birds of the world. Cuckoo-shrikes to thrushes, vol 10. Lynx Editions, BarcelonaGoogle Scholar
  18. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2006) Handbook of the birds of the world. Old world flycatchers to old world warblers, vol 11. Lynx Editions, BarcelonaGoogle Scholar
  19. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2007) Handbook of the birds of the world. Picathartes to tits and chickadees, vol 12. Lynx Editions, BarcelonaGoogle Scholar
  20. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2008) Handbook of the birds of the world. Penduline-tits to shrikes, vol 13. Lynx Editions, BarcelonaGoogle Scholar
  21. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2009) Handbook of the birds of the world. Bush-shrikes to old world sparrows, vol 14. Lynx Editions, BarcelonaGoogle Scholar
  22. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2010) Handbook of the birds of the world. Weavers to new world warblers, vol 15. Lynx Editions, BarcelonaGoogle Scholar
  23. Del Hoyo J, Elliott A, Sargatal J, Christie DA (2011) Handbook of the birds of the world. Tanagers to new world blackbirds, vol 16. Lynx Editions, BarcelonaGoogle Scholar
  24. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  25. Gibbons DW, Gregory RD (2006) Birds. In: Sutherland WJ (ed) Ecological census techniques: a handbook. Cambridge University Press, Cambridge, pp 308–350CrossRefGoogle Scholar
  26. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871CrossRefGoogle Scholar
  27. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320(5884):1763–1768CrossRefPubMedGoogle Scholar
  28. Herrando S, Llimona F, Brotons L, Quesada J (2010) A new exotic bird in Europe: recent spread and potential range of Red-billed Leiothrix Leiothrix lutea in Catalonia (northeast Iberian Peninsula). Bird Study 57:226–235CrossRefGoogle Scholar
  29. Hoffmann BD (2003) An assessment of the status and possible eradication of yellow crazy ants in north-eastern Arnhem Land. CSIRO, DarwinGoogle Scholar
  30. Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251CrossRefGoogle Scholar
  31. Huisman J, Weissing FJ (2002) Oscillations and chaos generated by competition for interactively essential resources. Ecol Res 17:175–181CrossRefGoogle Scholar
  32. Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448. doi: 10.1038/nature11631 CrossRefPubMedGoogle Scholar
  33. Jonart LM, Hill GE, Badyaev AV (2007) Fighting ability and motivation: determinants of dominance and contest strategies in females of a passerine bird. Anim Behav 74:1675–1681CrossRefGoogle Scholar
  34. Julliard R, Clavel J, Devictor V et al (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244. doi: 10.1111/j.1461-0248.2006.00977.x CrossRefPubMedGoogle Scholar
  35. Koenig WD (2003) European Starlings and their effect on native cavity-nesting birds. Conserv Biol 17:1134–1140. doi: 10.1046/j.1523-1739.2003.02262.x CrossRefGoogle Scholar
  36. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298(5996):1233–1236. doi: 10.1126/science.1075753 CrossRefPubMedGoogle Scholar
  37. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefPubMedGoogle Scholar
  38. Lever C (2005) Naturalised birds of the world. T & AD Poyser, LondonGoogle Scholar
  39. Liker A, Bokony V (2009) Larger groups are more successful in innovative problem solving in house sparrows. Proc Natl Acad Sci USA 106:7893–7898CrossRefPubMedPubMedCentralGoogle Scholar
  40. Llimona F (2004) Rossinyol del Japó Leiothrix lutea. In: Estrada J, Pedrocchi V, Brotons L, Herrando S (eds) Atles dels ocells nidificants de Catalunya 1999–2002. Institut Català d’Ornitologia (ICO)/Lynx Edicions, Barcelona, pp 448–449Google Scholar
  41. Llimona F, Prodon R (2000) Canvis avifaunístics globals al Parc de Collserola en una sèrie de 10 anys de seguiment. In: Llimona F, Espelta JM, Guix JC et al (eds) I Jornades sobre la Recerca en els sistemes naturals de Collserola: aplicacions a la gestió del Parc. Patronat del Parc de Collserola, Barcelona, pp 205–211Google Scholar
  42. Long JL (1981) Introduced birds of the world. David & Charles, LondonGoogle Scholar
  43. Macarthur RH, Levins R (1967) Limiting similarity convergence and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  44. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  45. McGill BJ, Enquist BJ, Weiher V, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185CrossRefPubMedGoogle Scholar
  46. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  47. O’Dowd DJ, Green PT, Lake PS (2003) Invasional “meltdown” on an oceanic island. Ecol Lett 6:812–817. doi: 10.1046/j.1461-0248.2003.00512.x CrossRefGoogle Scholar
  48. Pérez-Haase A, Carreras J (2012) Creació d’una Geobase de dades dels hàbitats CORINE del Parc de Collserola a escala 1:10.000. University of Barcelona-Barcelona City Council-Barcelona Provincial Council, BarcelonaGoogle Scholar
  49. Pianka ER (1974) Niche overlap and diffuse competition. Proc Natl Acad Sci USA 71:2141–2145CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pyšek P, Krivanek M, Jarosik V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744CrossRefPubMedGoogle Scholar
  51. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRefGoogle Scholar
  52. Rodriguez A, Hausberger M, Clergeau P (2010) Flexibility in European starlings’ use of social information: experiments with decoys in different populations. Anim Behav 80:965–973. doi: 10.1016/j.anbehav.2010.08.010 CrossRefGoogle Scholar
  53. Sax D, Brown J (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371CrossRefGoogle Scholar
  54. Schoener T (1983) Field experiments on interspecific competition. Am Nat 122:240–285CrossRefGoogle Scholar
  55. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  56. Sher AA, Hyatt LA (1999) The disturbed resource-flux invasion matrix: a new framework for patterns of plant invasion. Biol Invasions 1:107–114CrossRefGoogle Scholar
  57. Shochat E, Lerman SB, Katti M, Lewis DB (2004) Linking optimal foraging behavior to bird community structure in an urban-desert landscape: field experiments with artificial food patches. Am Nat 164:232–243. doi: 10.1086/422222 CrossRefPubMedGoogle Scholar
  58. Smallwood KS (1994) Site invasibility by exotic birds and mammals. Biol Conserv 69:251–259CrossRefGoogle Scholar
  59. Sol D (2007) Do successful invaders exist? Pre-adaptations to novel environments in terrestrial vertebrates. In: Nentwig W (ed) Biological invasions. Springer, Heidelberg, pp 127–141CrossRefGoogle Scholar
  60. Sol D, Bartomeus I, Griffin AS (2012a) The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia 169(2):553–564. doi: 10.1007/s00442-011-2203-x CrossRefPubMedGoogle Scholar
  61. Sol D, Maspons J, Vall-llosera M et al (2012b) Unraveling the life history of successful invaders. Science 337(6094):580–583. doi: 10.1126/science.1221523 CrossRefPubMedGoogle Scholar
  62. Sol D, González-Lagos C, Lapiedra O, Diaz M (2015) Why are exotic birds so successful in urbanized environments? In: Murgui Hedblom (ed) Urban ornithology. Springer, New YorkGoogle Scholar
  63. Stohlgren TJ, Binkley D, Chong GW et al (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46CrossRefGoogle Scholar
  64. Svensson L (1992) Identification guide to European passerines. Stockholm, SwedenGoogle Scholar
  65. Tennant LE (1994) The ecology of Wasmannia auropunctata in primary tropical rain-forest in Costa-Rica and Panama. In: Williams DF (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 80–90Google Scholar
  66. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  67. Webb C, Ackerly D, McPeek M, Donoghue M (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  68. Williamson M (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar
  69. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711. doi: 10.1086/343872 CrossRefPubMedGoogle Scholar
  70. Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686CrossRefGoogle Scholar
  71. Zuur AF, Barbraud C, Leno EN et al (2009) Estimating trends for Antarctic birds in relation to climate change. In: Zuur AF, Leno EN, Walker NJ et al (eds) Mixed effects models and extensions in ecology with R. Springer, New York, pp 343–361CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miquel Vall-llosera
    • 1
    Email author
  • Francesc Llimona
    • 2
  • Miquel de Cáceres
    • 1
    • 3
  • Sergi Sales
    • 2
  • Daniel Sol
    • 1
    • 4
  1. 1.CREAF (Centre de Recerca Ecològica i Aplicacions Forestals)Cerdanyola del VallèsSpain
  2. 2.Can Balasc Biological StationCollserola Park ConsortiumBarcelonaSpain
  3. 3.CTFC (Centre Tecnològic Forestal de Catalunya)SolsonaSpain
  4. 4.CEAB-CSIC (Centre d’Estudis Avançats de Blanes-Consejo Superior de Investigaciones Científicas)BlanesSpain

Personalised recommendations