Advertisement

Biological Invasions

, Volume 18, Issue 12, pp 3449–3464 | Cite as

Habitat heterogeneity facilitates coexistence of native fishes with an introduced predator: the resilience of a fish community 5 decades after the introduction of Nile perch

  • Emmanuelle ChrétienEmail author
  • Lauren J. Chapman
Original Paper

Abstract

The introduction of the large piscivorous Nile perch Lates niloticus (L.) into Lake Nabugabo, Uganda, coincided with a collapse of the native fish community and the development of a fishing industry dominated by Nile perch. Some native fish have persisted in the face of Nile perch predation through use of hypoxic wetlands that may serve as both structural and physiological refugia because Nile perch is sensitive to hypoxic stress. In this study, we analyzed one year of monthly sampling using experimental gill nets to describe the Lake Nabugabo fish community 50 years after the introduction of the Nile perch. Using a multivariate approach, we found that water depth and dissolved oxygen concentration were the main descriptors shaping the fish community distribution in the lake, and that Nile perch and its major prey, haplochromine cichlids, have contrasting ecological requirements. Comparison with previous studies over a 15-year period revealed an overall decline in the catch per unit effort of Nile perch and a resurgence of haplochromine cichlids in certain habitats. We suggest that differences in the abiotic requirements of Nile perch and haplochromines combined with heavy fishing on Nile perch have contributed to the resurgence of the native fauna. This highlights the importance of environmental heterogeneity in mitigating the impact of introduced species on recipient communities; and, in the case of the Lake Victoria basin, underscores the critical need to conserve ecotonal wetlands for their essential role as ecological refugia.

Keywords

Exotic species Lake Victoria Hypoxia Haplochromines Habitat refugia Community 

Notes

Acknowledgments

We would like to thank Dr. P. Legendre for his advice on statistical analyses, and the Quebec Center for Biodiversity Science R Workshop series. We also thank Dr. D. Twinomugisha for managing field research in Uganda, and the team of field assistants (Mutebi, Sseguya, Kiberu) for data collection. Financial support for this study was provided by grants to EC from Natural Sciences and Engineering Research Council of Canada (NSERC, CGS), Fonds Québecois de la Recherche sur la Nature et les Technologies (FQRNT), Quebec Center for Biodiversity Science, and McGill University, and grants to LJC from NSERC (Discovery Grant) and CRC research funds.

Funding

Financial support for this study was provided by grants to EC from Natural Sciences and Engineering Research Council of Canada (NSERC, CGS), Fonds Québecois de la Recherche sur la Nature et les Technologies (FQRNT), Quebec Center for Biodiversity Science, and McGill University, and grants to LJC from NSERC (Discovery Grant) and CRC research funds.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Human and animals rights

This research was conducted with the approval of McGill University’s Animal Care Committee and Uganda National Council for Science and Technology.

Supplementary material

10530_2016_1235_MOESM1_ESM.tiff (1.5 mb)
Fig. S1 Multivariate regression tree (MTR) analysis defining the partition of the sites sampled in Lake Nabugabo in relation to environmental variables. Error = 0.693 (reciprocal R2 = 30.7 %); CV error = 0.749 (reciprocal R cv 2  = 25.1 %); SE = 0.0596 (TIFF 1521 kb)
10530_2016_1235_MOESM2_ESM.tiff (1.5 mb)
Fig. S2 Correlation between dissolved oxygen (DO) concentrations and water depth in wetland ecotone habitats (a) and the Forest habitat (b) in Lake Nabugabo from July 2009 to May 2010 (TIFF 1521 kb)

References

  1. Ayala JR, Rader RB, Belk MC, Schaalje GB (2007) Ground-truthing the impact of invasive species: spatio-temporal overlap between native least chub and introduced western mosquitofish. Biol Invasions 9:857–869. doi: 10.1007/s10530-006-9087-4 CrossRefGoogle Scholar
  2. Balirwa JS, Chapman CA, Chapman LJ et al (2003) Biodiversity and fishery sustainability in the Lake Victoria basin: an unexpected marriage? Bioscience 53:703–715CrossRefGoogle Scholar
  3. Barel CDN, Van Oijen MJP, Witte F, Witte-Maas ELM (1977) An introduction to the taxonomy and morphology of the haplochromine Cichlidae from Lake Victoria. Neth J Zool 27:333–389CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7, URL: http://CRAN.R-project.org/package=lme4
  5. Bikangaga S, Picchi MP, Focardi S, Rossi C (2007) Perceived benefits of littoral wetlands in Uganda: a focus on the Nabugabo wetlands. Wetl Ecol Manag 15:529–535. doi: 10.1007/s11273-007-9049-3 CrossRefGoogle Scholar
  6. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi: 10.2307/1940179 CrossRefGoogle Scholar
  7. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  8. Britton JR, Cucherousset J, Davies GD et al (2010) Non-native fishes and climate change: predicting species responses to warming temperatures in a temperate region. Freshw Biol 55:1130–1141. doi: 10.1111/j.1365-2427.2010.02396.x CrossRefGoogle Scholar
  9. Brown LR, Moyle PB (1991) Changes in habitat and microhabitat partitioning within an assemblage of stream fishes in response to predation by Sacramento squawfish (Ptychocheilus grandis). Can J Fish Aquat Sci 48:849–856CrossRefGoogle Scholar
  10. Bwanika GN, Chapman LJ, Kizito Y, Balirwa J (2006) Cascading effects of introduced Nile perch (Lates niloticus) on the foraging ecology of Nile tilapia (Oreochromis niloticus). Ecol Freshw Fish 15:470–481. doi: 10.1111/j.1600-0633.2006.00185.x CrossRefGoogle Scholar
  11. Chapman LJ, Chapman CA, Chandler M (1996a) Wetland ecotones as refugia for endangered fishes. Biol Conserv 78:263–270CrossRefGoogle Scholar
  12. Chapman LJ, Chapman CA, Ogutu-Ohwayo R et al (1996b) Refugia for endangered fishes from an introduced predator in Lake Nabugabo, Uganda. Conserv Biol 10:554–561. doi: 10.1046/j.1523-1739.1996.10020554.x CrossRefGoogle Scholar
  13. Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE (2002) Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comp Biochem Physiol Part A 133:421–437CrossRefGoogle Scholar
  14. Chapman LJ, Chapman CA, Schofield PJ et al (2003) Fish faunal resurgence in Lake Nabugabo, East Africa. Conserv Biol 17:500–511. doi: 10.1046/j.1523-1739.2003.01519.x CrossRefGoogle Scholar
  15. Chapman L, Albert J, Galis F (2008) Developmental plasticity, genetic differentiation, and hypoxia-induced trade-offs in an African cichlid fish. Open Evol J 2:75–88CrossRefGoogle Scholar
  16. Clavero M, Garcia-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the iberian peninsula. Ecol Appl 16:2313–2324CrossRefPubMedGoogle Scholar
  17. Closs GE, Lake PS (1996) Drought, differential mortality and the coexistence of a native and an introduced fish species in a south east Australian intermittent stream. Environ Biol Fishes 47:17–26. doi: 10.1007/BF00002376 CrossRefGoogle Scholar
  18. CNBS (1962) Cambridge Nabugabo biological survey. Preliminary report, Uganda. CNBS Makerere College LibraryGoogle Scholar
  19. Cox JG, Lima SL (2006) Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680. doi: 10.1016/j.tree.2006.07.011 CrossRefPubMedGoogle Scholar
  20. Cucherousset J, Olden JD (2011) Ecological impacts of non-native freshwater fishes. Fisheries 36:215–230. doi: 10.1080/03632415.2011.574578 CrossRefGoogle Scholar
  21. Davies PT, Tso MK-S (1982) Procedures for reduced-rank regression. Appl Stat 31:244–255CrossRefGoogle Scholar
  22. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi: 10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  23. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. doi: 10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  24. De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117Google Scholar
  25. De’ath G (2014) mvpart: Multivariate partitioning. R package version 1.6-2. URL: http://CRAN.R-project.org/package=mvpart
  26. DeRivera CE, Ruiz GM, Hines AH, Jivoff P (2005) Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86:3364–3376. doi: 10.1890/05-0479 CrossRefGoogle Scholar
  27. Goudswaard K, Witte F, Katunzi EFB (2008) The invasion of an introduced predator, Nile perch (Lates niloticus, L.) in Lake Victoria (East Africa): chronology and causes. Environ Biol Fishes 81:127–139. doi: 10.1007/s10641-006-9180-7 CrossRefGoogle Scholar
  28. Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786. doi: 10.1111/j.1095-8649.2010.02566.x CrossRefGoogle Scholar
  29. Gratwicke B, Marschall BE (2001) The relationship between the exotic predators Micropterus salmoides and Serranochromis robustus and native stream fishes in Zimbabwe. J Fish Biol 58:68–75. doi: 10.1006/jfbi.2000.1423 CrossRefGoogle Scholar
  30. Greenwood PH (1965) The cichlid fishes of Lake Nabugabo, Uganda. Bull Br Museum—Nat Hist 12:313–357Google Scholar
  31. Hanna DEL, Buck DG, Chapman LJ (2016) Effects of habitat on mercury concentrations in fish: a case study of Nile perch (Lates niloticus) in Lake Nabugabo, Uganda. Ecotoxicology 25:178–191. doi: 10.1007/s10646-015-1578-6 CrossRefPubMedGoogle Scholar
  32. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  33. Jang MH, Joo GJ, Lucas MC (2006) Diet of introduced largemouth bass in Korean rivers and potential interactions with native fishes. Ecol Freshw Fish 15:315–320. doi: 10.1111/j.1600-0633.2006.00161.x CrossRefGoogle Scholar
  34. Kaufman L (1992) Catastrophic change in species rich freshwater ecosystems: the lessons of Lake Victoria. Bioscience 42:846–858CrossRefGoogle Scholar
  35. Kaufman L, Ochumba P (1993) Evolutionary and conservation biology of cichlid fishes as revealed by faunal remnants in northern Lake Victoria. Conserv Biol 7:719–730. doi: 10.1046/j.1523-1739.1993.07030719.x CrossRefGoogle Scholar
  36. Kestrup ÅM, Ricciardi A (2009) Environmental heterogeneity limits the local dominance of an invasive freshwater crustacean. Biol Invasions 11:2095–2105. doi: 10.1007/s10530-009-9490-8 CrossRefGoogle Scholar
  37. Kolding J, van Zwieten P, Mkumbo O, et al (2008) Are the Lake Victoria fisheries threatened by exploitation or eutrophication? Towards an ecosystem based approach to management. In: The Ecosystem Approach to Fisheries. pp. 309–354Google Scholar
  38. Legendre P, Legendre L (2012) Numerical ecology, Third English edn. Elsevier, AmsterdamGoogle Scholar
  39. McDowall RM (2003) Impacts of introduced salmonids on native Galaxiid in New Zealand upland streams: a new look at an old problem. Trans Am Fish Soc 132:229–238. doi: 10.1577/1548-8659(2003)132 CrossRefGoogle Scholar
  40. McGee MD, Borstein SR, Neches RY et al (2015) A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids. Science 350:1077–1079. doi: 10.1126/science.aab0800 CrossRefPubMedGoogle Scholar
  41. Nyboer EA, Chapman LJ (2013a) Movement and home range of introduced Nile perch (Lates niloticus) in Lake Nabugabo, Uganda: implications for ecological divergence and fisheries management. Fish Res 137:18–29. doi: 10.1016/j.fishres.2012.08.003 CrossRefGoogle Scholar
  42. Nyboer EA, Chapman LJ (2013b) Ontogenetic shifts in phenotype-environment associations in Nile perch, Lates niloticus (Perciformes: Latidae) from Lake Nabugabo, Uganda. Biol J Linn Soc 110:449–465CrossRefGoogle Scholar
  43. Nyboer EA, Gray SM, Chapman LJ (2014) A colourful youth: ontogenetic colour change is habitat specific in the invasive Nile perch. Hydrobiologia 738:221–234. doi: 10.1007/s10750-014-1961-y CrossRefGoogle Scholar
  44. Ogutu-Ohwayo R (1993) The effects of predation by Nile perch, Lates niloticus L., on the fish of Lake Nabugabo, with suggestions for conservation of endangered endemic cichlids. Conserv Biol 7:701–711. doi: 10.1046/j.1523-1739.1993.07030701.x CrossRefGoogle Scholar
  45. Ogutu-Ohwayo R (2004) Management of the Nile perch, Lates niloticus fishery in Lake Victoria in light of the changes in its life history characteristics. Afr J Ecol 42:306–314CrossRefGoogle Scholar
  46. Oksanen JF, Blanchet G, Kindt R, et al (2015) vegan: community Ecology Package. R package version 2.2-1. URL: http://CRAN.R-project.org/package=vegan
  47. Paterson JA, Chapman LJ (2009) Fishing down and fishing hard: ecological change in the Nile perch of Lake Nabugabo, Uganda. Ecol Freshw Fish 18:380–394. doi: 10.1111/j.1600-0633.2009.00355.x CrossRefGoogle Scholar
  48. Paterson JA, Chapman LJ, Schofield PJ (2010) Intraspecific variation in gill morphology of juvenile Nile perch, Lates niloticus, in Lake Nabugabo, Uganda. Environ Biol Fishes 88:97–104. doi: 10.1007/s10641-010-9600-6 CrossRefGoogle Scholar
  49. Peters G (2015) userfriendlyscience: quantitative analysis made accessible. R package version 0.3-0, URL: http://CRAN.R-project.org/package=userfriendlyscience
  50. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefPubMedGoogle Scholar
  51. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi: 10.1126/science.1135471 CrossRefPubMedGoogle Scholar
  52. Pringle RM (2005) The origins of the Nile perch in Lake Victoria. Bioscience 55:780–787CrossRefGoogle Scholar
  53. Reid AJ, Chapman LJ, Ricciardi A (2013) Wetland edges as peak refugia from an introduced piscivore. Aquat Conserv Mar Freshw Ecosyst 23:646–655. doi: 10.1002/aqc.2328 CrossRefGoogle Scholar
  54. Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48:972–981. doi: 10.1046/j.1365-2427.2003.01071.x CrossRefGoogle Scholar
  55. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336. doi: 10.1111/j.1523-1739.2006.00615.x CrossRefPubMedGoogle Scholar
  56. Ricciardi A (2015) Ecology of invasive alien invertebrates. In: Roger DC (ed) Ecology and general biology: thorp and Covich’s freshwater invertebrates. Academic Press, Cambridge, pp 83–91CrossRefGoogle Scholar
  57. Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222. doi: 10.1046/j.1523-1739.1999.98380.x CrossRefGoogle Scholar
  58. Rosenberger AE, Chapman LJ (1999) Hypoxic wetland tributaries as faunal refugia from an introduced predator. Ecol Freshw Fish 8:22–34CrossRefGoogle Scholar
  59. Rosenberger AE, Chapman LJ (2000) Respiratory characters of three species of haplochromine cichlids: implications for use of wetland refugia. J Fish Biol 57:483–501. doi: 10.1006/jfbi.2000.1326 CrossRefGoogle Scholar
  60. Schofield PJ, Chapman LJ (1999) Interactions between Nile perch, Lates niloticus, and other fishes in Lake Nabugabo, Uganda. Environ Biol Fishes 55:343–358CrossRefGoogle Scholar
  61. Schofield PJ, Chapman LJ (2000) Hypoxia tolerance of introduced Nile perch: implications for survival of indigenous fishes in the Lake Victoria basin. African Zool 35:35–42Google Scholar
  62. Seehausen O, Alphen J, Witte F (1997a) Cichild fish diversity threatened by europhication that curbs sexual selection. Science 277:1808–1810CrossRefGoogle Scholar
  63. Seehausen O, Witte F, Katunzi EF et al (1997b) Patterns of the remnant cichlid fauna in southern Lake Victoria. Conserv Biol 11:890–904. doi: 10.1046/j.1523-1739.1997.95346.x CrossRefGoogle Scholar
  64. Stager JC, Westwood J, Grzesik D, Cumming BF (2005) A 5500-year environmental history of Lake Nabugabo, Uganda. Palaeogeogr Palaeoclimatol Palaeoecol 218:347–354. doi: 10.1016/j.palaeo.2004.12.025 CrossRefGoogle Scholar
  65. Strauss SY, Lau JA, Carroll SP (2006) Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities? Ecol Lett 9:357–374. doi: 10.1111/j.1461-0248.2005.00874.x CrossRefPubMedGoogle Scholar
  66. Taabu-Munyaho A (2014) Anthropogenic and environmental impacts on the abundance and distribution of commercial fish stocks of Lake Victoria. University of Iceland, East AfricaGoogle Scholar
  67. Townsend CR (1996) Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biol Conserv 78:13–22. doi: 10.1016/0006-3207(96)00014-6 CrossRefGoogle Scholar
  68. Vaccaro I, Chapman C, Nyboer E et al (2013) An interdisciplinary method to harmonise ecology, economy and co-management: fisheries exploitation in Lake Nabugabo, Uganda. African J Aquat Sci 38:97–104. doi: 10.2989/16085914.2013.842535 CrossRefGoogle Scholar
  69. van Rijssel JC, Witte F (2013) Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years. Evol Ecol 27:253–267. doi: 10.1007/s10682-012-9596-9 CrossRefGoogle Scholar
  70. Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  71. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218CrossRefGoogle Scholar
  72. Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548CrossRefGoogle Scholar
  73. Witte F, Goldschmidt T, Wanink J et al (1992a) The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fishes 34:1–28. doi: 10.1007/BF00004782 CrossRefGoogle Scholar
  74. Witte F, Goldschmidt T, Goudswaard PC et al (1992b) Species Extinction and Concomitant Ecological Changes in Lake Victoria. Neth J Zool 42:214–232. doi: 10.1163/156854291X00298 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations