Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change

Abstract

The ranges of species, including invasives, are expected to shift poleward in response to climate change. As their distributions expand, invasive species will encounter different communities and the resulting biotic interactions could affect invasive species range expansion dynamics. Here, we assess whether biotic interactions with natural enemies have the potential to affect range expansion dynamics of three invasive woody plants (Berberis thunbergii, Celastrus orbiculatus and Elaeagnus umbellata). To do so, we planted them in two sites in a region where they are currently abundant and in three sites in a northern region near their range edge where they are expected to become more common due to climate change. Two of the species have not yet been observed within any of the northern sites and one species is present within one of the northern sites. All species experienced more foliar herbivory in the higher latitude (northern) region and the two species that are currently absent from the northern sites experienced less foliar disease there. However, the regional differences in biotic interactions had very minor effects on survival; the only statistically significant reduction in survival was from foliar disease for B. thunbergii, and even that had only a marginal effect on survival. This suggests that, at least for these invasive species in this area, interactions with existing natural assemblages of natural enemies will have only an exceedingly minor effect on populations establishing near range edges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams JM, Zhang Y (2009) Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J Ecol 97:933–940. doi:10.1111/j.1365-2745.2009.01523.x

    Article  Google Scholar 

  2. Adams JM, Rehill B, Zhang Y, Gower J (2008) A test of the latitudinal defense hypothesis: herbivory, tannins and total phenolics in four North American tree species. Ecol Res 24:697–704. doi:10.1007/s11284-008-0541-x

    Article  Google Scholar 

  3. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386. doi:10.1111/j.1600-0706.2009.17977.x

    Article  Google Scholar 

  4. Alexander HM, Price S, Houser R et al (2007) Is there reduction in disease and pre-dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. J Ecol 95:446–457. doi:10.1111/j.1365-2745.2007.01228.x

    Article  Google Scholar 

  5. Andersen P, Gill R (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  Google Scholar 

  6. Andrew NR, Hughes L (2007) Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Glob Chang Biol 13:1539–1549. doi:10.1111/j.1365-2486.2007.01393.x

    Article  Google Scholar 

  7. Barnes B, Zak D, Denton S, Spurr S (1998) Forest Ecology, 4th edn. John Wiley & Sons, New York

    Google Scholar 

  8. Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92:1019–1024. doi:10.1111/j.1365-2745.2004.00945.x

    Article  Google Scholar 

  9. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi:10.1111/j.1472-4642.2008.00521.x

    Article  Google Scholar 

  10. Chun YJ, van Kleunen M, Dawson W (2010) The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol Lett. doi:10.1111/j.1461-0248.2010.01498.x

    PubMed  Google Scholar 

  11. Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240. doi:10.1111/j.1365-3180.2011.00850.x

    Article  Google Scholar 

  12. Crimmins SM, Dobrowski SZ, Greenberg JA et al (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327

    CAS  Article  PubMed  Google Scholar 

  13. Crossman ND, Bryan BA, Cooke DA (2011) An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecol Indic 11:183–198. doi:10.1016/j.ecolind.2008.10.011

    Article  Google Scholar 

  14. Diez JM, Dickie I, Edwards G et al (2010) Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett 13:803–809. doi:10.1111/j.1461-0248.2010.01474.x

    Article  PubMed  Google Scholar 

  15. EDDMapS (2015) Early detection & distribution mapping system. In: Univ. Georg. Cent. Invasive Species Ecosyst. Heal. www.eddmaps.org

  16. Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, Chicago

    Google Scholar 

  17. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541. doi:10.1111/j.1461-0248.2010.01440.x

    Article  PubMed  Google Scholar 

  18. Flory S, Clay K (2013) Pathogen accumulation and long-term dynamics of plant invasions. J Ecol 101:607–613. doi:10.1111/1365-2745.12078

    Article  Google Scholar 

  19. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  20. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741. doi:10.1109/TPAMI.1984.4767596

    CAS  Article  PubMed  Google Scholar 

  21. Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am Nat 183:157–173. doi:10.1086/674525

    Article  PubMed  Google Scholar 

  22. Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750. doi:10.1111/j.1600-0706.2013.01263.x

    Article  Google Scholar 

  23. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five Potential Consequences of Climate Change for Invasive Species. Conserv Biol 22:534–543. doi:10.1111/j.1523-1739.2008.00951.x

    Article  PubMed  Google Scholar 

  24. Herberich E, Sikorski J, Hothorn T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5:1–8. doi:10.1371/journal.pone.0009788

    Article  Google Scholar 

  25. Hickling R, Roy DB, Hill JK et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455. doi:10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  26. HilleRisLambers J, Harsch MA, Ettinger AK et al (2013) How will biotic interactions influence climate change-induced range shifts? Ann N Y Acad Sci 1297:112–125. doi:10.1111/nyas.12182

    PubMed  Google Scholar 

  27. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi:10.1002/bimj.200810425

    Article  Google Scholar 

  28. Ibáñez I, Silander JA, Wilson AM et al (2009a) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:359–375

    Article  PubMed  Google Scholar 

  29. Ibáñez I, Silander JA, Allen JM et al (2009b) Identifying hotspots for plant invasions and forecasting focal points of further spread. J Appl Ecol 46:1219–1228. doi:10.1111/j.1365-2664.2009.01736.x

    Article  Google Scholar 

  30. Ibáñez I, Diez JM, Miller LP et al (2014) Integrated assessment of biological invasions. Ecol Appl 24:25–37. doi:10.1890/13-0776.1

    Article  PubMed  Google Scholar 

  31. Jeschke J, Gómez Aparicio L, Haider S et al (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20. doi:10.3897/neobiota.14.3435

    Article  Google Scholar 

  32. Johnson MTJ, Bertrand JA, Turcotte MM (2015) Precision and accuracy in quantifying herbivory. Ecol Entomol 41:112–121. doi:10.1111/een.12280

    Article  Google Scholar 

  33. Jones CC, Acker SA, Halpern CB (2010) Combining local- and large-scale models to predict the distributions of invasive plant species. Ecol Appl 20:311–326. doi:10.1890/08-2261.1

    Article  PubMed  Google Scholar 

  34. Katz DSW (2016) The effects of invertebrate herbivores on plant population growth: a meta-regression analysis. Oecologia.  doi:10.1007/s00442-016-3602-9

    PubMed  Google Scholar 

  35. Katz DSW, Ibáñez I (2016a) Data from: foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Dryad Digital Repository. http://datadryad.org/resource/doi:10.5061/dryad.1b433

  36. Katz DSW, Ibáñez I (2016b) Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Ecology. doi:10.1002/ecy.1468

    Google Scholar 

  37. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  38. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and biotic invasions: a case history of a tropical woody vine. Biol Invasions 5:147–165. doi:10.1023/A:1026193424587

    Article  Google Scholar 

  39. Lafleur NE, Rubega MA, Elphick CS (2007) Invasive Fruits, Novel Foods, and Choice: an Investigation of European Starling and American Robin Frugivory. Wilson J Ornithol 119:429–438. doi:10.1676/05-115.1

    Article  Google Scholar 

  40. Lakeman-Fraser P, Ewers RM (2013) Enemy release promotes range expansion in a host plant. Oecologia 172:1203–1212. doi:10.1007/s00442-012-2555-x

    Article  PubMed  Google Scholar 

  41. Lehndal L, Agren J (2015) Herbivory differentially affects plant fitness in three populations of the perennial Herb Lythrum salicaria along a Latitudinal gradient. PLoS One 10:1–13. doi:10.1371/journal.pone.0135939

    Article  Google Scholar 

  42. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584. doi:10.1098/rspb.2006.3587

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martin TG, Murphy H, Liedloff A et al (2015) Buffel grass and climate change: a framework for projecting invasive species distributions when data are scarce. Biol Invasions 17:3197–3210. doi:10.1007/s10530-015-0945-9

    Article  Google Scholar 

  44. Matesanz S, Horgan-Kobelski T, Sultan SE (2015) Evidence for rapid ecological range expansion in a newly invasive plant. AoB Plants 7:plv038. doi:10.1093/aobpla/plv038

    Article  PubMed  PubMed Central  Google Scholar 

  45. McCarthy-Neumann S, Ibáñez I (2012) Tree range expansion may be enhanced by escape from negative plant-soil feedbacks. Ecology 93:2637–2649. doi:10.1890/11-2281.1

    Article  PubMed  Google Scholar 

  46. McDonald RI, Motzkin G, Foster DR (2008) Assessing the influence of historical factors, contemporary processes, and environmental conditions on the distribution of invasive species. J Torrey Bot Soc 135:260–271. doi:10.3159/08-Ra-012.1

    Article  Google Scholar 

  47. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  48. Mehta SV, Haight RG, Homans FR et al (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245. doi:10.1016/j.ecolecon.2006.10.024

    Article  Google Scholar 

  49. Merow C, Lafleur N, Silander JA et al (2011) Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across northeastern North America. Am Nat 178:30–43. doi:10.1086/660295

    Article  PubMed  Google Scholar 

  50. Mitchell CE, Blumenthal D, Jarošík V et al (2010) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol Lett 13:1525–1535. doi:10.1111/j.1461-0248.2010.01543.x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moles AT, Bonser SP, Poore AGB et al (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi:10.1111/j.1365-2435.2010.01814.x

    Article  Google Scholar 

  52. Moorcroft PR, Pacala SW, Lewis MA (2006) Potential role of natural enemies during tree range expansions following climate change. J Theor Biol 241:601–616. doi:10.1016/j.jtbi.2005.12.019

    CAS  Article  PubMed  Google Scholar 

  53. Morriën E, Engelkes T, Macel M et al (2010) Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Ann Bot. doi:10.1093/aob/mcq064

    PubMed  PubMed Central  Google Scholar 

  54. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    CAS  Article  PubMed  Google Scholar 

  55. Patterson SL, Zak DR, Burton AJ et al (2011) Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. J Appl Ecol. doi:10.1111/j.1365-2664.2011.02090.x

    Google Scholar 

  56. Phillips B, Kelehear C, Pizzatto L et al (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91:872–881

    Article  PubMed  Google Scholar 

  57. Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. http://mcmc-jags.sourceforge.net/

  58. Plummer M (2014) Rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/web/packages/rjags/rjags.pdf

  59. Prior KM, Powell THQ, Joseph AL, Hellmann JJ (2015) Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects. Biol Invasions 17:1283–1297. doi:10.1007/s10530-014-0800-4

    Article  Google Scholar 

  60. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  61. Schaffers AP, Raemakers IP, Sýkora KV, Ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794. doi:10.1890/07-0361.1

    Article  PubMed  Google Scholar 

  62. Silander JA, Klepeis DM (1999) The invasion ecology of Japanese barberry (Berberis thunbergii) in the New England landscape. Biol Invasions 1:189–201. doi:10.1023/A:1010024202294

    Article  Google Scholar 

  63. Sinclair W, Lyon H (2005) Diseases of trees and shrubs. Cornell University Press, Ithaca

    Google Scholar 

  64. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc 64:583–639. doi:10.1111/1467-9868.00353

    Article  Google Scholar 

  65. Svenning JC, Gravel D, Holt RD et al (2014) The influence of interspecific interactions on species range expansion rates. Ecography 37:1198–1209

    Article  PubMed  PubMed Central  Google Scholar 

  66. Uden DR, Allen CR, Angeler DG et al (2015) Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions 17:2831–2850. doi:10.1007/s10530-015-0914-3

    Article  Google Scholar 

  67. USDA NRCS (2016) The PLANTS database. http://plants.usda.gov/. Accessed 1 Jan 2016

  68. USDA Forest Service Northern Research Station (2010) Invasive species maps. In: For. Invent. Anal. http://www.nrs.fs.fed.us/fia/maps/Invasive-maps/default.asp. Accessed 1 Jan 2016

  69. van der Putten WH (2011) Climate change, aboveground-belowground interactions, and species’ range shifts. Annu Rev Ecol Evol Syst 43:365–383. doi:10.1146/annurev-ecolsys-110411-160423

    Article  Google Scholar 

  70. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Biol 365:2025–2034. doi:10.1098/rstb.2010.0037

    Article  Google Scholar 

  71. Wan JS, Bonser SP (2016) Enemy release at range edges: do invasive species escape their herbivores as they expand into new areas? J Plant Ecol. doi:10.1093/jpe/rtw003

    Google Scholar 

  72. Ward JS, Worthley TE, Williams SC (2009) Controlling Japanese barberry (Berberis thunbergii DC) in southern New England, USA. For Ecol Manage 257:561–566. doi:10.1016/j.foreco.2008.09.032

    Article  Google Scholar 

  73. Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  74. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482.  doi:10.1890/070037

    Article  Google Scholar 

  75. Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30. doi:10.1111/j.1469-185X.2012.00235.x

    Article  PubMed  Google Scholar 

  76. Zarnetske P, Skelly D, Urban M (2012) Biotic multipliers of climate change. Science 336:1516–1518

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF) through a Graduate Research Fellowship and a dissertation improvement Grant (DEB 1309805) to DK. Funding was also provided by a NSF Grant (DEB 1252664), the United States Department of Agriculture (USDA) McIntire-Stennis Program (USDA 2012-32100-06099) to II, and by the University of Michigan’s School of Natural Resources and Environment, Rackham Graduate School, Matthaei Botanical Garden, and the E.S. George Reserve.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel S. W. Katz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Supplementary material 2 (R 8 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katz, D.S.W., Ibáñez, I. Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change. Biol Invasions 18, 3351–3363 (2016). https://doi.org/10.1007/s10530-016-1229-8

Download citation

Keywords

  • Climate change
  • Natural enemies
  • Species distribution models
  • Berberis thunbergii
  • Elaeagnus umbellata
  • Celastrus orbiculatus