Advertisement

Biological Invasions

, Volume 18, Issue 11, pp 3351–3363 | Cite as

Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change

  • Daniel S. W. Katz
  • Inés Ibáñez
Original Paper

Abstract

The ranges of species, including invasives, are expected to shift poleward in response to climate change. As their distributions expand, invasive species will encounter different communities and the resulting biotic interactions could affect invasive species range expansion dynamics. Here, we assess whether biotic interactions with natural enemies have the potential to affect range expansion dynamics of three invasive woody plants (Berberis thunbergii, Celastrus orbiculatus and Elaeagnus umbellata). To do so, we planted them in two sites in a region where they are currently abundant and in three sites in a northern region near their range edge where they are expected to become more common due to climate change. Two of the species have not yet been observed within any of the northern sites and one species is present within one of the northern sites. All species experienced more foliar herbivory in the higher latitude (northern) region and the two species that are currently absent from the northern sites experienced less foliar disease there. However, the regional differences in biotic interactions had very minor effects on survival; the only statistically significant reduction in survival was from foliar disease for B. thunbergii, and even that had only a marginal effect on survival. This suggests that, at least for these invasive species in this area, interactions with existing natural assemblages of natural enemies will have only an exceedingly minor effect on populations establishing near range edges.

Keywords

Climate change Natural enemies Species distribution models Berberis thunbergii Elaeagnus umbellata Celastrus orbiculatus 

Notes

Acknowledgments

This work was supported by the National Science Foundation (NSF) through a Graduate Research Fellowship and a dissertation improvement Grant (DEB 1309805) to DK. Funding was also provided by a NSF Grant (DEB 1252664), the United States Department of Agriculture (USDA) McIntire-Stennis Program (USDA 2012-32100-06099) to II, and by the University of Michigan’s School of Natural Resources and Environment, Rackham Graduate School, Matthaei Botanical Garden, and the E.S. George Reserve.

Supplementary material

10530_2016_1229_MOESM1_ESM.docx (232 kb)
Supplementary material 1 (DOCX 232 kb)
10530_2016_1229_MOESM2_ESM.r (7 kb)
Supplementary material 2 (R 8 kb)

References

  1. Adams JM, Zhang Y (2009) Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J Ecol 97:933–940. doi: 10.1111/j.1365-2745.2009.01523.x CrossRefGoogle Scholar
  2. Adams JM, Rehill B, Zhang Y, Gower J (2008) A test of the latitudinal defense hypothesis: herbivory, tannins and total phenolics in four North American tree species. Ecol Res 24:697–704. doi: 10.1007/s11284-008-0541-x CrossRefGoogle Scholar
  3. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386. doi: 10.1111/j.1600-0706.2009.17977.x CrossRefGoogle Scholar
  4. Alexander HM, Price S, Houser R et al (2007) Is there reduction in disease and pre-dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. J Ecol 95:446–457. doi: 10.1111/j.1365-2745.2007.01228.x CrossRefGoogle Scholar
  5. Andersen P, Gill R (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120CrossRefGoogle Scholar
  6. Andrew NR, Hughes L (2007) Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Glob Chang Biol 13:1539–1549. doi: 10.1111/j.1365-2486.2007.01393.x CrossRefGoogle Scholar
  7. Barnes B, Zak D, Denton S, Spurr S (1998) Forest Ecology, 4th edn. John Wiley & Sons, New YorkGoogle Scholar
  8. Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92:1019–1024. doi: 10.1111/j.1365-2745.2004.00945.x CrossRefGoogle Scholar
  9. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi: 10.1111/j.1472-4642.2008.00521.x CrossRefGoogle Scholar
  10. Chun YJ, van Kleunen M, Dawson W (2010) The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol Lett. doi: 10.1111/j.1461-0248.2010.01498.x PubMedGoogle Scholar
  11. Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240. doi: 10.1111/j.1365-3180.2011.00850.x CrossRefGoogle Scholar
  12. Crimmins SM, Dobrowski SZ, Greenberg JA et al (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327CrossRefPubMedGoogle Scholar
  13. Crossman ND, Bryan BA, Cooke DA (2011) An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecol Indic 11:183–198. doi: 10.1016/j.ecolind.2008.10.011 CrossRefGoogle Scholar
  14. Diez JM, Dickie I, Edwards G et al (2010) Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett 13:803–809. doi: 10.1111/j.1461-0248.2010.01474.x CrossRefPubMedGoogle Scholar
  15. EDDMapS (2015) Early detection & distribution mapping system. In: Univ. Georg. Cent. Invasive Species Ecosyst. Heal. www.eddmaps.org
  16. Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  17. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541. doi: 10.1111/j.1461-0248.2010.01440.x CrossRefPubMedGoogle Scholar
  18. Flory S, Clay K (2013) Pathogen accumulation and long-term dynamics of plant invasions. J Ecol 101:607–613. doi: 10.1111/1365-2745.12078 CrossRefGoogle Scholar
  19. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  20. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741. doi: 10.1109/TPAMI.1984.4767596 CrossRefPubMedGoogle Scholar
  21. Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am Nat 183:157–173. doi: 10.1086/674525 CrossRefPubMedGoogle Scholar
  22. Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750. doi: 10.1111/j.1600-0706.2013.01263.x CrossRefGoogle Scholar
  23. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five Potential Consequences of Climate Change for Invasive Species. Conserv Biol 22:534–543. doi: 10.1111/j.1523-1739.2008.00951.x CrossRefPubMedGoogle Scholar
  24. Herberich E, Sikorski J, Hothorn T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5:1–8. doi: 10.1371/journal.pone.0009788 CrossRefGoogle Scholar
  25. Hickling R, Roy DB, Hill JK et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455. doi: 10.1111/j.1365-2486.2006.01116.x CrossRefGoogle Scholar
  26. HilleRisLambers J, Harsch MA, Ettinger AK et al (2013) How will biotic interactions influence climate change-induced range shifts? Ann N Y Acad Sci 1297:112–125. doi: 10.1111/nyas.12182 PubMedGoogle Scholar
  27. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  28. Ibáñez I, Silander JA, Wilson AM et al (2009a) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:359–375CrossRefPubMedGoogle Scholar
  29. Ibáñez I, Silander JA, Allen JM et al (2009b) Identifying hotspots for plant invasions and forecasting focal points of further spread. J Appl Ecol 46:1219–1228. doi: 10.1111/j.1365-2664.2009.01736.x CrossRefGoogle Scholar
  30. Ibáñez I, Diez JM, Miller LP et al (2014) Integrated assessment of biological invasions. Ecol Appl 24:25–37. doi: 10.1890/13-0776.1 CrossRefPubMedGoogle Scholar
  31. Jeschke J, Gómez Aparicio L, Haider S et al (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20. doi: 10.3897/neobiota.14.3435 CrossRefGoogle Scholar
  32. Johnson MTJ, Bertrand JA, Turcotte MM (2015) Precision and accuracy in quantifying herbivory. Ecol Entomol 41:112–121. doi: 10.1111/een.12280 CrossRefGoogle Scholar
  33. Jones CC, Acker SA, Halpern CB (2010) Combining local- and large-scale models to predict the distributions of invasive plant species. Ecol Appl 20:311–326. doi: 10.1890/08-2261.1 CrossRefPubMedGoogle Scholar
  34. Katz DSW (2016) The effects of invertebrate herbivores on plant population growth: a meta-regression analysis. Oecologia.  doi: 10.1007/s00442-016-3602-9 PubMedGoogle Scholar
  35. Katz DSW, Ibáñez I (2016a) Data from: foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Dryad Digital Repository. http://datadryad.org/resource/doi:10.5061/dryad.1b433
  36. Katz DSW, Ibáñez I (2016b) Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Ecology. doi: 10.1002/ecy.1468 Google Scholar
  37. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  38. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and biotic invasions: a case history of a tropical woody vine. Biol Invasions 5:147–165. doi: 10.1023/A:1026193424587 CrossRefGoogle Scholar
  39. Lafleur NE, Rubega MA, Elphick CS (2007) Invasive Fruits, Novel Foods, and Choice: an Investigation of European Starling and American Robin Frugivory. Wilson J Ornithol 119:429–438. doi: 10.1676/05-115.1 CrossRefGoogle Scholar
  40. Lakeman-Fraser P, Ewers RM (2013) Enemy release promotes range expansion in a host plant. Oecologia 172:1203–1212. doi: 10.1007/s00442-012-2555-x CrossRefPubMedGoogle Scholar
  41. Lehndal L, Agren J (2015) Herbivory differentially affects plant fitness in three populations of the perennial Herb Lythrum salicaria along a Latitudinal gradient. PLoS One 10:1–13. doi: 10.1371/journal.pone.0135939 CrossRefGoogle Scholar
  42. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584. doi: 10.1098/rspb.2006.3587 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martin TG, Murphy H, Liedloff A et al (2015) Buffel grass and climate change: a framework for projecting invasive species distributions when data are scarce. Biol Invasions 17:3197–3210. doi: 10.1007/s10530-015-0945-9 CrossRefGoogle Scholar
  44. Matesanz S, Horgan-Kobelski T, Sultan SE (2015) Evidence for rapid ecological range expansion in a newly invasive plant. AoB Plants 7:plv038. doi: 10.1093/aobpla/plv038 CrossRefPubMedPubMedCentralGoogle Scholar
  45. McCarthy-Neumann S, Ibáñez I (2012) Tree range expansion may be enhanced by escape from negative plant-soil feedbacks. Ecology 93:2637–2649. doi: 10.1890/11-2281.1 CrossRefPubMedGoogle Scholar
  46. McDonald RI, Motzkin G, Foster DR (2008) Assessing the influence of historical factors, contemporary processes, and environmental conditions on the distribution of invasive species. J Torrey Bot Soc 135:260–271. doi: 10.3159/08-Ra-012.1 CrossRefGoogle Scholar
  47. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098CrossRefGoogle Scholar
  48. Mehta SV, Haight RG, Homans FR et al (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245. doi: 10.1016/j.ecolecon.2006.10.024 CrossRefGoogle Scholar
  49. Merow C, Lafleur N, Silander JA et al (2011) Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across northeastern North America. Am Nat 178:30–43. doi: 10.1086/660295 CrossRefPubMedGoogle Scholar
  50. Mitchell CE, Blumenthal D, Jarošík V et al (2010) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol Lett 13:1525–1535. doi: 10.1111/j.1461-0248.2010.01543.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Moles AT, Bonser SP, Poore AGB et al (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi: 10.1111/j.1365-2435.2010.01814.x CrossRefGoogle Scholar
  52. Moorcroft PR, Pacala SW, Lewis MA (2006) Potential role of natural enemies during tree range expansions following climate change. J Theor Biol 241:601–616. doi: 10.1016/j.jtbi.2005.12.019 CrossRefPubMedGoogle Scholar
  53. Morriën E, Engelkes T, Macel M et al (2010) Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Ann Bot. doi: 10.1093/aob/mcq064 PubMedPubMedCentralGoogle Scholar
  54. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi: 10.1038/nature01286 CrossRefPubMedGoogle Scholar
  55. Patterson SL, Zak DR, Burton AJ et al (2011) Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. J Appl Ecol. doi: 10.1111/j.1365-2664.2011.02090.x Google Scholar
  56. Phillips B, Kelehear C, Pizzatto L et al (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91:872–881CrossRefPubMedGoogle Scholar
  57. Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. http://mcmc-jags.sourceforge.net/
  58. Plummer M (2014) Rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/web/packages/rjags/rjags.pdf
  59. Prior KM, Powell THQ, Joseph AL, Hellmann JJ (2015) Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects. Biol Invasions 17:1283–1297. doi: 10.1007/s10530-014-0800-4 CrossRefGoogle Scholar
  60. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  61. Schaffers AP, Raemakers IP, Sýkora KV, Ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794. doi: 10.1890/07-0361.1 CrossRefPubMedGoogle Scholar
  62. Silander JA, Klepeis DM (1999) The invasion ecology of Japanese barberry (Berberis thunbergii) in the New England landscape. Biol Invasions 1:189–201. doi: 10.1023/A:1010024202294 CrossRefGoogle Scholar
  63. Sinclair W, Lyon H (2005) Diseases of trees and shrubs. Cornell University Press, IthacaGoogle Scholar
  64. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc 64:583–639. doi: 10.1111/1467-9868.00353 CrossRefGoogle Scholar
  65. Svenning JC, Gravel D, Holt RD et al (2014) The influence of interspecific interactions on species range expansion rates. Ecography 37:1198–1209CrossRefPubMedPubMedCentralGoogle Scholar
  66. Uden DR, Allen CR, Angeler DG et al (2015) Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions 17:2831–2850. doi: 10.1007/s10530-015-0914-3 CrossRefGoogle Scholar
  67. USDA NRCS (2016) The PLANTS database. http://plants.usda.gov/. Accessed 1 Jan 2016
  68. USDA Forest Service Northern Research Station (2010) Invasive species maps. In: For. Invent. Anal. http://www.nrs.fs.fed.us/fia/maps/Invasive-maps/default.asp. Accessed 1 Jan 2016
  69. van der Putten WH (2011) Climate change, aboveground-belowground interactions, and species’ range shifts. Annu Rev Ecol Evol Syst 43:365–383. doi: 10.1146/annurev-ecolsys-110411-160423 CrossRefGoogle Scholar
  70. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Biol 365:2025–2034. doi: 10.1098/rstb.2010.0037 CrossRefGoogle Scholar
  71. Wan JS, Bonser SP (2016) Enemy release at range edges: do invasive species escape their herbivores as they expand into new areas? J Plant Ecol. doi: 10.1093/jpe/rtw003 Google Scholar
  72. Ward JS, Worthley TE, Williams SC (2009) Controlling Japanese barberry (Berberis thunbergii DC) in southern New England, USA. For Ecol Manage 257:561–566. doi: 10.1016/j.foreco.2008.09.032 CrossRefGoogle Scholar
  73. Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  74. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482.  doi: 10.1890/070037 CrossRefGoogle Scholar
  75. Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30. doi: 10.1111/j.1469-185X.2012.00235.x CrossRefPubMedGoogle Scholar
  76. Zarnetske P, Skelly D, Urban M (2012) Biotic multipliers of climate change. Science 336:1516–1518CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Natural Resources and EnvironmentUniversity of Michigan – Ann ArborAnn ArborUSA

Personalised recommendations