Biological Invasions

, Volume 18, Issue 11, pp 3149–3161 | Cite as

Behavioural plasticity in nest-site selection of a colonial seabird in response to an invasive carnivore

  • Álvaro Barros
  • Rafael Romero
  • Ignacio Munilla
  • Cristobal Pérez
  • Alberto Velando
Original Paper


Non-native invasive species are one of the most serious threats to biodiversity and are considered the leading cause of extinction of several bird taxa, including seabirds. Introduced American mink (Neovison vison) have caused devastating effects on island populations of several colonial seabird species. In this study, we investigated the direct and indirect effects of mink on population dynamics and reproductive success of European shags (Phalacrocorax aristotelis) breeding at Illas Cíes, one of the most important colonies of the species in Southern Europe. A severe episode of mink predation on adult shags occurred in the year when mink arrived in the breeding colonies, though the number of shags killed dropped abruptly in subsequent years. We found that, after the arrival of mink, shags moved to nest-sites that afforded greater protection from carnivores. This shift caused a substantial reduction in mortality by predation, but probably entailed a cost in terms of their reproductive success because sites with lower levels of predation risk showed a higher risk of egg loss by nest flooding due to poorer drainage. Our study highlights that behavioural plasticity may allow shags to cope with invasive predators.


American mink European shag Non-native predator Mink predation Habitat change Reproduction 



We are grateful to the staff at the Parque Natural Illas Cíes and Parque Nacional Illas Atlánticas de Galicia for logistic support all over the study period, especially to Ramón Nogueira, José Antonio Fernández Bouzas, Vicente Piorno, Susana Torres and Gonzalo Puerto. We are especially grateful to Beatriz Gamallo, Francisco Docampo, Carmen Díaz, Antonio Sampedro, José Manuel Sanchez for their assistance in fieldwork. We thank Alejandro Martinez-Abraín and one anonymous reviewer for their constructive comments, which helped us to improve the manuscript. Permissions were guaranteed by Xunta de Galicia and Parque Nacional Illas Atlánticas de Galicia. Finance was provided by the Spanish Ministerio de Medio Ambiente (Organismo Autónomo Parques Nacionales, 48/2005; 275/2011). Ignacio Munilla was financially supported by an Isidro Parga Pondal fellowship (Xunta de Galicia).

Supplementary material

10530_2016_1205_MOESM1_ESM.pdf (364 kb)
Supplementary material 1 (PDF 363 kb)


  1. Aebischer NJ (1986) Retrospective investigation of an ecological disaster in the shag, Phalacrocorax aristotelis: a general method based on long-term marking. J Anim Ecol 55:613–629CrossRefGoogle Scholar
  2. Aebischer NJ, Wanless S (1992) Relationships between colony size, adult non-breeding and environmental conditions for Shags Phalacrocorax aristotelis on the Isle of May, Scotland. Bird Study 39:43–52CrossRefGoogle Scholar
  3. Barros A, Álvarez D, Velando A (2013) Cormorán moñudo—Phalacrocorax aristotelis. In: Salvador A, Morales MB (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. Accessed 24 June 2015
  4. Barros A, Álvarez D, Velando A (2014) Long-term reproductive impairment in a seabird after the Prestige oil spill. Biol Lett. doi: 10.1098/rsbl.2013.1041 PubMedPubMedCentralGoogle Scholar
  5. Bennett PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B 264:401–408CrossRefGoogle Scholar
  6. BirdLife International (2000) Threatened birds of the world. Lynx Edicions and BirdLife International, BarcelonaGoogle Scholar
  7. Bixler KS (2010) Why aren’t Pigeon Guillemots in Prince William Sound, Alaska, recovering from the Exxon Valdez oil spill? M.Sc. Thesis, Oregon State University, Corvallis, OregonGoogle Scholar
  8. Björsson TE, Heirstensson P (1991) Mink in southern Breidfjordur Bay. In: Macdonald D, Strachan R (eds) The mink and the water vole. Analyses for Conservation 7. Wildlife Conservation Research Unit and the Environment Agency, Oxford, pp 3–12Google Scholar
  9. Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958CrossRefPubMedGoogle Scholar
  10. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  11. Bonesi L, Macdonald DW (2004) Evaluation of sign surveys as a way to estimate the relative abundance of American mink (Mustela vison). J Zool 262:65–72CrossRefGoogle Scholar
  12. Bonesi L, Palazón S (2007) The American mink in Europe: status, impacts, and control. Biol Conserv 134:470–483CrossRefGoogle Scholar
  13. Bonesi L, Chanin P, Macdonald W (2004) Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by niche shift. Oikos 106:19–26CrossRefGoogle Scholar
  14. Brzeziński M, Natorff M, Zalewski A, Zmihorski M (2012) Numerical and behavioral responses of waterfowl to the invasive American mink: a conservation paradox. Biol Conserv 147:68–78CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New YorkGoogle Scholar
  16. Craik C (1995) Effects of North American mink on the breeding success of terns and smaller gulls in west Scotland. Seabird 17:3–11Google Scholar
  17. Craik C (1997) Long-term effects of North American Mink Mustela vison on seabirds in western Scotland. Bird Study 44:303–309CrossRefGoogle Scholar
  18. Croxall JP, Rothery P (1991) Population regulation of seabirds: implications of their demography for conservation. In: Perrins CM, Lebreton JD, Hirons GJM (eds) Bird population studies, relevance to conservation and management. University Press, OxfordGoogle Scholar
  19. Dunstone N (1993) The mink. T & AD Poyser Ltd, LondonGoogle Scholar
  20. Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc R Soc Lond B 273:701–706CrossRefGoogle Scholar
  21. Fleming MA, Cook JA (2010) MtDNA and microsatellite DNA provide evidence of fur farm ancestry for mink populations in Prince William Sound, Alaska. Exxon Valdez Oil Spill Restoration Project 070853. Museum of Southwestern Biology, University of New Mexico, Albuquerque, NMGoogle Scholar
  22. Folkestad AO (1982) The effect of mink predation on some seabird species. Viltrapport 21:42–49Google Scholar
  23. Fontaine JJ, Martin TE (2006) Habitat selection responses of parents to offspring predation risk: an experimental test. Am Nat 168:811–818CrossRefPubMedGoogle Scholar
  24. Forstmeier W, Weiss I (2004) Adaptative plasticity in nest-site selection in response to predation risk. Oikos 104:487–499CrossRefGoogle Scholar
  25. Furness RW, Monaghan P (1987) Seabird ecology. Blackie, GlasgowGoogle Scholar
  26. García-Díaz P, Lizana M (2013) Reproductive aspects of American minks (Neovison vison) in central Spain: testing the effects of prey availability. Mamm Biol 78:111–117Google Scholar
  27. Gobster PH (2005) Invasive species as ecological threat: is restoration an alternative to fear-based resource management? Ecol Rest 23:261–270CrossRefGoogle Scholar
  28. Harfenist A, Ydenberg RC (1995) Parental provisioning and predation risk in rhinoceros auklets (Cerorhinca monocerata): effects on nestling growth and fledging. Behav Ecol 6:82–86CrossRefGoogle Scholar
  29. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Biol 46:10–18Google Scholar
  30. Lima SL (2009) Predators and the breeding bird: behavioural and reproductive flexibility under the risk of predation. Biol Rev 84:485–513CrossRefPubMedGoogle Scholar
  31. Little RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc, CaryGoogle Scholar
  32. Mainwaring MC, Hartley IR, Lambrechts MM, Deeming DC (2014) The design and function of birds’ nests. Ecol Evol 4:3909–3928CrossRefPubMedPubMedCentralGoogle Scholar
  33. Martin TE (1993) Nest Predation and nest-sites: new perspectives on old patterns. Bioscience 43:523–532CrossRefGoogle Scholar
  34. Martínez-Abraín A, Velando A, Oro D, Genovart M, Gerique C, Bartolomé MA, Villuendas E, Sarzo B (2006) Sex-specific mortality of European shags after the Prestige oil spill: demographic implications for the recovery of colonies. Mar Ecol Prog Ser 318:271–276CrossRefGoogle Scholar
  35. McNeely JA (2005) Human dimensions of invasive alien species. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species: a new synthesis. Island Press, WashingtonGoogle Scholar
  36. Melero Y, Palazón S (2011) Visón americano—Neovison vison. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador A, Cassinello J (ed) Museo Nacional de Ciencias Naturales, Madrid. Accessed 20 May 2015
  37. Mooney HA, Hobbs RJ (2000) Invasive species in a changing world. Island Press, Washington DCGoogle Scholar
  38. Nelson BJ (2006) The pelecaniformes. Oxford University Press, OxfordGoogle Scholar
  39. Nordström M, Högmander J, Laine J, Nummelin J, Laanetu N, Korpimäki E (2003) Effects of feral mink removal on seabirds, waders and passerines on small islands in the Baltic sea. Biol Conserv 109:359–368CrossRefGoogle Scholar
  40. Opermanis O, Mednis A, Bauga I (2001) Duck nests and predators: interaction, specialisation and possible management. Wildl Biol 7:87–96Google Scholar
  41. Oro D, Pradel R, Lebreton JD (1999) The effects of nest predation and food availability on life history traits in Audouin’s gull. Oecologia 118:438–445CrossRefGoogle Scholar
  42. Pereira P (2006) Estudio de la metodología para el control de la población de visón americano en el archipiélago de Sálvora en el Parque Nacional Islas Atlánticas de Galicia. Parque Nacional Islas Atlánticas de Galicia (unpublished report)Google Scholar
  43. Quillfeldt P, Schenk I, McGill RAR, Strange IJ, Masello JF, Gladbach A, Roesch V, Furness RW (2008) Introduced mammals coexist with seabirds at New Island, Falkland Islands: abundance, habitat preferences and stable isotope analysis of diet. Polar Biol 31:333–349CrossRefGoogle Scholar
  44. Ratcliffe N, Craik C, Helyar A, Roy S, Scott M (2008) Modelling the benefits of American Mink Mustela vison management options for terns in west Scotland. Ibis 150:114–121CrossRefGoogle Scholar
  45. Regehr HM, Rodway MS, Montevecchi WA (1998) Antipredator benefits of nest-site selection in Black-legged Kittiwakes. Can J Zool 76:910–915CrossRefGoogle Scholar
  46. Romero R, Piorno V (2012) Plan de control de visón americano (Neovison vison) en el Parque Nacional de las Islas Atlánticas de Galicia. In: Proceedings of the 7th European conference on biological invasions. Pontevedra (Spain)Google Scholar
  47. Russell RW (1999) Comparative demography and life history tactics of seabirds: implications for conservation and marine monitoring life in the slow lane. Ecology and conservation of long-lived marine animals. Am Fish Soc Sympos 23:51–76Google Scholar
  48. Saether BE, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653CrossRefGoogle Scholar
  49. Schüttler E, Ibarra JT, Gruber B, Rozzi R, Jax K (2009) Abundance and habitat preferences of the southernmost population of mink: implications for managing a recent island invasion. Biodivers Conserv 19:725–743CrossRefGoogle Scholar
  50. Short J, Kinnear JE, Robley A (2002) Surplus killing by introduced predators in Australia—evidence for ineffective antipredator adaptations in native prey species? Biol Conserv 103:283–301CrossRefGoogle Scholar
  51. Travers M, Clinchy M, Zanette L, Boonstra R, Williams TD (2010) Indirect predator effects on clutch size and the cost of egg production. Ecol Lett 13:980–988PubMedGoogle Scholar
  52. Vidal-Figueroa T, Delibes M (1987) Primeros datos sobre el visón americano (Mustela vison) en el Suroeste de Galicia y Noroeste de Portugal. Ecología 1:145–152Google Scholar
  53. Velando A, Álvarez D (2004) Cormorán moñudo, Phalacrocorax aristotelis aristotelis. In: Madroño A, González C, Atienza JC (eds) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, Madrid, pp 60–62Google Scholar
  54. Velando A, Freire J (2001) Can the central-periphery distribution become general in seabird colonies? Nest spatial pattern in the European Shag. Condor 103:544–554CrossRefGoogle Scholar
  55. Velando A, Freire J (2002) Population modelling of European shag at their southern limit: conservation implications. Biol Conserv 107:59–69CrossRefGoogle Scholar
  56. Velando A, Freire J (2003) Nest-site characteristics, occupation and breeding success in the European shag. Waterbirds 26:473–483CrossRefGoogle Scholar
  57. Velando A, Marquez JC (2002) Predation risk and habitat selection in the inca tern (Larosterna inca). Can J Zool 80:1117–1123CrossRefGoogle Scholar
  58. Velando A, Munilla I (2008) Plan de Conservación del Cormorán Moñudo en el Parque Nacional de las Islas Atlánticas. Universidade de Vigo, Spain (unpublished report)Google Scholar
  59. Velando A, Ortega-Ruano JE, Freire J (1999) Chick mortality in European shag Stictocarbo aristotelis related to food limitations during adverse weather events. Ardea 87:51–59Google Scholar
  60. Velando A, Álvarez D, Mouriño J, Arcos F, Barros A (2005a) Population trends and reproductive success of the European shag Phalacrocorax aristotelis on the Iberian Peninsula following the Prestige oil spill. J Ornithol 146:116–120CrossRefGoogle Scholar
  61. Velando A, Munilla I, Leyenda PM (2005b) Short-term indirect effects of the Prestige oil spill on a marine top predator: changes in prey availability for European shags. Mar Ecol Prog Ser 302:263–274CrossRefGoogle Scholar
  62. Velando A, Barros A, Moran P (2015) Heterozygosity–fitness correlations in a declining seabird population. Mol Ecol 24:1007–1018CrossRefPubMedGoogle Scholar
  63. Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  64. Zuberogoitia I, Zabala J, Martínez JA (2006) Evaluation of sign surveys and trappability of American mink. Consequences for management. Fol Zool 55:257–263Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Álvaro Barros
    • 1
  • Rafael Romero
    • 2
  • Ignacio Munilla
    • 3
  • Cristobal Pérez
    • 4
  • Alberto Velando
    • 1
  1. 1.Departamento de Ecoloxía e Bioloxía Animal, Campus As LagoasUniversidade de VigoVigoSpain
  2. 2.Santiago de CompostelaSpain
  3. 3.Departamento de BotánicaUniversidade de SantiagoSantiago de CompostelaSpain
  4. 4.Eco-Ethology Research UnitISPALisbonPortugal

Personalised recommendations