The role of plant fidelity and land-use changes on island exotic and indigenous canopy spiders at local and regional scales

Abstract

Understanding the processes that lead to successful invasions is essential for the management of exotic species. We aimed to assess the comparative relevance of habitat (both at local and at regional scale) and plant features on the species richness of local canopy spiders of both indigenous and exotic species. In an oceanic island, Azores archipelago, we collected spiders in 97 transects belonging to four habitat types according to the degree of habitat disturbance, four types of plants with different colonisation origin (indigenous vs. exotic), and four types of plants according to the complexity of the vegetation structure. Generalised linear mixed models and linear regressions were performed separately for indigenous and exotic species at the local and regional landscape scales. At the local scale, habitat and plant origin explained the variation in the species richness of indigenous spiders, whereas exotic spider richness was poorly correlated to habitat and plant structure. The surrounding landscape matrix substantially affected indigenous spiders, but did not affect exotic spiders, with the exception of the negative effect exerted by native forests on the richness of exotic species. Our results revealed that the local effect of habitat type, plant origin and plant structure explain variations in the species richness observed at a regional scale. These results shed light on the mechanistic processes behind the role of habitat types in invasions, i.e., plant fidelity and plant structure are revealed as key factors, suggesting that native forests may act as physical barriers to the colonisation of exotic spiders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Beals ML (2006) Understanding community structure: a data-driven multivariate approach. Oecologia 150:484–495. doi:10.1007/s00442-006-0551-8

    Article  PubMed  Google Scholar 

  2. Bell JR, Wheater CP, Cullen WR (2001) The implication of grassland and heathland management for the conservation of spider communities: a review. J Zool 225:377–387. doi:10.1017/S0952836901001479

    Article  Google Scholar 

  3. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. doi:10.1079/BER2004350

    CAS  Article  PubMed  Google Scholar 

  4. Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958. doi:10.1126/science.1101617

    CAS  Article  PubMed  Google Scholar 

  5. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi:10.1016/j.tree.2011.03.023

    Article  PubMed  Google Scholar 

  6. Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–316. doi:10.13156/arac.2009.14.7.308

    Article  Google Scholar 

  7. Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410. doi:10.1111/j.1095-8312.1999.tb01897.x

    Article  Google Scholar 

  8. Borges PAV, Lobo JM, Azevedo EB, Gaspar CS, Melo C, Nunes LV (2006) Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. J Biogeogr 33:169–187. doi:10.1111/j.1365-2699.2005.01324.x

    Article  Google Scholar 

  9. Borges PAV, Ugland KI, Dinis FO, Gaspar C (2008) Insect and spider rarity in an oceanic island (Terceira, Azores): true rare and pseudo-rare species. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Kerala, pp 47–70

    Google Scholar 

  10. Borges PAV, Vieira V, Amorim IR, Bicudo N, Fritzén N, Gaspar C, Heleno R, Hortal J, Lissner J, Logunov D, Machado A, Marcelino J, Meijer SS, Melo C, Mendonça EP, Moniz J, Pereira F, Santos AS, Simões AM, Torrão E (2010) List of arthropods (Arthropoda). In: Borges PAV, Costa A, Cunha R, Gabriel R, Gonçalves VA, Martins F, Melo I, Parente M, Raposeiro P, Rodrigues P, Santos RS, Silva L, Vieira P, Vieira V (eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, pp 179–246

    Google Scholar 

  11. Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    CAS  Article  PubMed  Google Scholar 

  12. Byers JE (2002) Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130:146–156. doi:10.1007/s004420100777

    Article  Google Scholar 

  13. Cardoso P, Aranda SC, Lobo JM, Dinis F, Gaspar C, Borges PAV (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecol 35:590–597. doi:10.1016/j.actao.2009.05.005

    Article  Google Scholar 

  14. Cardoso P, Arnedo MA, Triantis KA, Borges PA (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J Biogeogr 37:1034–1046. doi:10.1111/j.1365-2699.2009.02264.x

    Article  Google Scholar 

  15. Cardoso P, Rigal F, Fattorini S, Terzopoulou S, Borges PAV (2013) Integrating landscape disturbance and indicator species in conservation studies. PLoS One 8:e63294. doi:10.1371/journal.pone.0063294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Cardoso P, Rigal F, Carvalho JC, Fortelius M, Borges PAV, Podani J, Schmera D (2014) Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J Biogeogr 41:749–761. doi:10.1111/jbi.12239

    Article  Google Scholar 

  17. Carvalho JC, Cardoso P (2014) Drivers of beta diversity in Macaronesian spiders in relation to dispersal ability. J Biogeogr 41:1859–1870. doi:10.1111/jbi.12348

    Article  Google Scholar 

  18. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96. doi:10.1080/00031305.1991.10475776

    Google Scholar 

  19. Connor SE, van Leeuwen JFN, Rittenour TM, van der Knaap WO, Ammann B, Björck S (2012) The ecological impact of oceanic island colonization—a palaeoecological perspective from the Azores. J Biogeogr 39:1007–1023. doi:10.1111/j.1365-2699.2011.02671.x

    Article  Google Scholar 

  20. Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theorical perspective. J Anim Ecol 61:1–2

    Article  Google Scholar 

  21. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496. doi:10.1016/j.tree.2007.07.001

    Article  PubMed  Google Scholar 

  22. Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJ, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi:10.1890/110137

    Article  Google Scholar 

  23. Diniz S, Lewinsohn TM, Prado PI (2012) Comparing assemblages of Asteraceae and their insect herbivores under different land-use regimens. Austral Ecol 37:419–428. doi:10.1111/j.1442-9993.2011.02294.x

    Article  Google Scholar 

  24. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, de Blust G, DeFilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait J-P, Schmidt T, Speelmans M, van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Global Ecol Biogeogr 16:774–787. doi:10.1111/j.1466-8238.2007.00344.x

    Article  Google Scholar 

  25. Douglas B, Maechler M, Bolker B (2013) lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-2. http://CRAN.R-project.org/package=lm4. Accessed 21 May 2015

  26. DROTRH (2008) Carta de ocupação do solo da região Autónoma dos Açores—Projecto SUEMAC. Secretaria Regional do Ambiente, Direcção Regional do Ordenamento do território e dos Recursos Hídricos, Ponta Delgada

  27. Ekroos J, Heliölä J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47:459–467. doi:10.1111/j.1365-2664.2009.01767.x

    Article  Google Scholar 

  28. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  29. Fernández-Juricic E (2002) Can human disturbance promote nestedness? A case study with breeding birds in urban habitat fragments. Oecologia 131:269–278. doi:10.1007/s00442-002-0883-y

    Article  Google Scholar 

  30. Florencio M, Cardoso C, Lobo JM, de Azevedo EB, Borges PAV (2013) Arthropod assemblage homogenisation in oceanic islands: the role of indigenous and exotic species under landscape disturbance. Divers Distrib 19:1450–1460. doi:10.1111/ddi.12121

    Article  Google Scholar 

  31. Gardner SM, Cabido MR, Valladares GR, Diaz S (1995) The influence of habitat structure on arthropod diversity in Argentine semi-arid Chaco forest. J Veg Sci 6:349–356. doi:10.2307/3236234

    Article  Google Scholar 

  32. Gillespie RG, Claridge EM, Roderick GK (2008) Biodiversity dynamics in isolated island communities: interaction between natural and human-mediated processes. Mol Ecol 17:45–57. doi:10.1111/j.1365-294X.2007.03466.x

    Article  PubMed  Google Scholar 

  33. González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20:720–731. doi:10.1111/ddi.12206

    Article  Google Scholar 

  34. Goßner MM, Chao A, Bailey RI, Prinzing A, Goβner MM (2009) Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees. Am Nat 173:599–614. doi:10.1086/597603

    Article  PubMed  Google Scholar 

  35. Hector A, Dobson K, Minns A, Bazeley-White E, Lawton JH (2001) Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol Res 16:819–831. doi:10.1046/j.1440-1703.2001.00443.x

    Article  Google Scholar 

  36. Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis G, Winemiller K (eds) Food Webs: contemporary perspectives. Chapman and Hall, New York, pp 313–323

    Google Scholar 

  37. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  38. Hubbell SP (2006) Neutral theory and the evolution of ecological equivalence. Ecology 87:1387–1398. doi:10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2

    Article  PubMed  Google Scholar 

  39. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32:113–122. doi:10.1111/j.1365-2311.2006.00848.x

    Article  Google Scholar 

  40. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi:10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  41. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell Publishing, Oxford

    Google Scholar 

  42. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671. doi:10.1023/A:1008985925162

    Article  Google Scholar 

  43. Markó V, Keresztes B, Fountain MT, Cross JV (2009) Prey availability, pesticides and the abundance of orchard spider communities. Biol Control 48:115–124. doi:10.1016/j.biocontrol.2008.10.002

    Article  Google Scholar 

  44. Markó V, Bogya S, Kondorosy E, Blommers LHM (2010) Side effects of kaolin particle films on apple orchard bug, beetle and spider communities. Int J Pest Manag 56:189–199. doi:10.1080/09670870903324206

    Article  Google Scholar 

  45. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

    Article  PubMed  Google Scholar 

  46. Meijer SS, Whittaker RJ, Borges PAV (2011) The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores): unmanaged plantations favour endemic beetles. J Insect Conserv 15:505–522. doi:10.1007/s10841-010-9330-2

    Article  Google Scholar 

  47. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  48. Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6:780–793. doi:10.1016/j.ecolind.2005.03.005

    Article  Google Scholar 

  49. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New York

    Book  Google Scholar 

  50. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 21 May 2015

  51. Reid AM, Hochuli DF (2007) Grassland invertebrate assemblages in managed landscapes: effect of host plant and microhabitat architecture. Austral Ecol 32:708–718. doi:10.1111/j.1442-9993.2007.01767.x

    Article  Google Scholar 

  52. Ribeiro SP, Borges PAV (2010) Canopy habitat area effect on the arthropod species densities in the Azores: pondering the contribution of tourist species and other life histories. In: Serrano ARM, Borges PAV, Boieiro M, Oromí P (eds) Terrestrial arthropods of Macaronesia—Biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, Lisboa, pp 89–114

    Google Scholar 

  53. Ribeiro SP, Borges PAV, Gaspar C, Melo C, Serrano ARM, Amaral J, Aguiar C, André G, Quartau JA (2005) Canopy insect herbivores in Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecography 28:315–330. doi:10.1111/j.0906-7590.2005.04104.x

    Article  Google Scholar 

  54. Santos AMC, Borges PAV, Hortal J, Rodrigues AC, Medeiros C, Azevedo EB, Melo C, Lopes DJH (2005) Diversidade da fauna de insectos fitófagos e de inimigos naturais em culturas frutícolas da ilha Terceira (Açores): a importância do maneio e da heterogeneidade ambiental. In: Lopes D, Pereira A, Mexia A, Mumford J, Cabrera R (eds) A Fruticultura na Macaronésia—O Contributo do projecto INTERFRUTA para o seu desenvolvimento. Universidade dos Açores, Angra do Heroísmo, pp 115–134

    Google Scholar 

  55. Sax DF (2001) Latitudinal gradients and geographic ranges of exotic species. J Biogeogr 28:139–150. doi:10.1046/j.1365-2699.2001.00536.x

    Article  Google Scholar 

  56. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3

    Article  Google Scholar 

  57. Shurin JB (2000) Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81:3074–3086. doi:10.1890/0012-9658(2000)081[3074:DLIRAT]2.0.CO;2

    Article  Google Scholar 

  58. Simberloff D (1995) Why do introduced species appear to devastate islands more than Maitland areas? Pac Sci 49:87–97

    Google Scholar 

  59. Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92. doi:10.1890/0012-9658(1997)078[0081:CIRLAG]2.0.CO;2

    Article  Google Scholar 

  60. Triantis KA, Borges PAV, Ladle RJ, Hortal J, Cardoso P, Gaspar C, Dinis F, Mendonça E, Silveira LMA, Gabriel R, Melo C, Santos AMC, Amorim IR, Ribeiro SP, Serrano ARM, Quartau JA, Whittaker RJ (2010) Extinction debt on oceanic islands. Ecography 33:285–294. doi:10.1111/j.1600-0587.2010.06203.x

    Google Scholar 

  61. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  62. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    CAS  Article  Google Scholar 

  63. Whittaker RJ, Rigal F, Borges PAV, Cardoso P, Terzopoulou S, Casanoves F, Pla L, Guilhaumon F, Ladle R, Triantis KA (2014) Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. P Nat Acad Sci USA 11:13709–13714. doi:10.1073/pnas.1218036111

    Article  Google Scholar 

  64. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) GLM and GAM for count data. Overdispersion. In: Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W (eds) Mixed effects models and extensions in ecology with R. Statistics for Biology and Health, Springer, New York, pp 224–227

    Google Scholar 

Download references

Acknowledgments

We are grateful to Alberto Jiménez-Valverde, Joaquín Calatayud, Joaquín Hortal, Jorge Noriega, Nagore García, Luis Maria Carrascal, Verónica Espinoza, Pablo González-Moreno and especially to Silvia C. Aranda, for comments on an early version of this manuscript. We are also grateful to Luis Mauricio Bini for some statistical suggestions and to Teresa Cuartero of the Informatics Biogeography Laboratory (MNCN-CSIC) for support in the GIS-based software. We acknowledge the field and laboratory assistants (Ana Cristina Rodrigues, Catarina Melo, Clara Gaspar, Emanuel Barcelos, Fernando Pereira, João Moniz, João André Silva, among others), and to the taxonomists who assisted in the identification of the morphotypes (Joerg Wunderlich, Luis Crespo). Financial support for field work was provided by projects: BALA—Direcção Regional dos Recursos Florestais (Proj. 17.01-080203—1999–2002); INTERFRUTA and INTERFRUTA II (INTERREG III B, 2000–2006); “Consequences of land-use change on Azorean fauna and flora—the 2010 Target” (DRCT-M.2.1.2/I/003/2008). We are also grateful to Direcção Regional da Ciência, Tecnologia e Comunicacões (DRCT) for supporting the fellowship of M.F. (M3.1.7/F/002/2011), which is currently funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (401045/2014-5), program Ciência sem Fronteiras. AMCS was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/70709/2010), co-funded by the European Social Fund POPH-QREN and a Marie Curie Intra-European Fellowship (IEF 331623 ‘COMMSTRUCT’). FR was supported by the FCT project PTDC/BIA-BIC/119255/2010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margarita Florencio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Number of transects included in each combination of habitat category, plant origin and plant structure (Table S1), and the presence/absence matrix of the species of canopy spiders (Table S2). (PDF 181 kb)

Analysis of the effect of the study years on the species richness of canopy spiders, after performing generalised linear models using the year as factor on the species richness of canopy spiders (Table S3). (PDF 97 kb)

Model deviance for overdispersion in Poisson generalised linear mixed models (GLMMs) (Table S4). GLMMs are performed on the species richness of canopy spiders (Table S5). Box plot indicating the median, maximum, minimum, and upper and lower quartiles of spider species richness represented by habitat categories differences after Tukey’s post hoc tests (Fig. S1). The coefficient of determination R 2 indicating the explanatory variability of the fixed factors alone (R 2 m ) and of each considered model including fixed and random effects together (R 2 c ; ranged 0–1, Table S6), and the Tukey’s post hoc tests for the factor habitat, on the species richness of adult and juvenile stages of indigenous and juvenile species, of the factor plant origin on the indigenous species richness, and of the factor plant structure on the exotic species richness (Table S7) are also indicated. (PDF 446 kb)

Hierarchical variation partitioning of habitat type, plant origin and plant structure factors on the species richness of canopy spiders. (PDF 90 kb)

Correlograms accounting for spatial autocorrelation, indicating the Moran index values calculated each km-transect distances on the raw data and the residual data after generalised linear mixed models (Fig. S2). (PDF 434 kb)

Variability of the species richness explained by the proportion of the eight land-uses at the 100, 200, 500, 1000 and 5000 m buffer distances after linear regressions, for exotic and indigenous species of adult and juveniles stages (Fig. S3). The percentage and the significance of the explained variability are indicated in detail (Table S8). (PDF 960 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Florencio, M., Rigal, F., Borges, P.A.V. et al. The role of plant fidelity and land-use changes on island exotic and indigenous canopy spiders at local and regional scales. Biol Invasions 18, 2309–2324 (2016). https://doi.org/10.1007/s10530-016-1162-x

Download citation

Keywords

  • Arthropods
  • Biotic resistance to invasions
  • Canopy spiders
  • Oceanic island
  • Plant architecture
  • Species richness