Skip to main content

Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

Abstract

Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Achenbach L, Brix H (2014) Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta? Hydrobiologia 737:5–23

    CAS  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Micobiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    PubMed  CAS  Google Scholar 

  • Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour Technol 86:7–13. doi:10.1016/S0960-8524(02)00134-7

    PubMed  CAS  Google Scholar 

  • Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chun-lan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70. doi:10.1007/s13199-014-0288-9

    CAS  Google Scholar 

  • Andonian K, Hierro JL (2011) Species interactions contribute to the success of a global plant invader. Biol Invasions 13:2957–2965. doi:10.1007/s10530-011-9978-x

    Google Scholar 

  • Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R (2012) The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol 5:683–693. doi:10.1016/j.funeco.2012.03.001

    Google Scholar 

  • Armstrong J, Armstrong W (2001) Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot 88:1359–1370

    PubMed  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66. doi:10.1016/j.fbr.2007.05.003

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459

    PubMed  Google Scholar 

  • Aschehoug ET, Metlen KL, Callaway RM, Newcombe G (2012) Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 93:3–8

    PubMed  Google Scholar 

  • Aschehoug ET, Callaway RM, Newcombe G, Tharayil N, Chen S (2014) Fungal endophyte increases the allelopathic effects of an invasive forb. Oecologia 175:285–291

    PubMed  Google Scholar 

  • Atala C, Capponi EM, Pereira G, Navarrete E, Oses R, Montenegro MM (2012) Impact of mycorrhizae and irrigation in the survival of seedlings of Pinus radiata D. Don subject to drought. Gayana Bot 69:296–304

    Google Scholar 

  • Azad K, Kaminskyj S (2015) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis. doi:10.1007/s13199-015-0370-y

    Article  Google Scholar 

  • Bacon CW, White JF (2000) Microbial Endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  • Blodgett JT, Swart WJ (2002) Infection, colonization, and disease of Amaranthus hybridus leaves by the Alternaria tenuissima group. Plant Dis 86:1199–1205. doi:10.1094/PDIS.2002.86.11.1199

    PubMed  CAS  Google Scholar 

  • Bonanno G, Giudice RL (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645. doi:10.1016/j.ecolind.2009.11.002

    CAS  Google Scholar 

  • Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92:1027–1035

    PubMed  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, Oxford

    Google Scholar 

  • Chu WK, Wong MH, Zhang J (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: I. Whole plant study. Environ Geochem Health 28:159–168. doi:10.1007/s10653-005-9027-8

    PubMed  CAS  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1745

    PubMed  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Google Scholar 

  • Collado J, Platas G, González I, Peláez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532

    PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Cronin JT, Bhattarai GP, Allen WJ, Meyerson LA (2015) Biogeography of a plant invasion: plant–herbivore interactions. Ecology 96:1115–1127

    PubMed  Google Scholar 

  • Currie AF, Wearn J, Hodgson S, Wendt H, Broughton SJ, Jin L (2014) Foliar fungal endophytes in herbaceous plants: a marriage of convenience. In: Verma VC, Gange AC (eds) Advances in Endophytic Research. Springer, New Delhi, pp 61–81

    Google Scholar 

  • Fer T, Hroudova Z (2009) Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat Bot 90:165–171

    Google Scholar 

  • Fischer MS, Rodriguez RJ (2013) Fungal endophytes of invasive Phagramites australis populations vary in species composition and fungicide susceptibility. Symbiosis 61:55–62. doi:10.1007/s13199-013-0261-z

    CAS  Google Scholar 

  • Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58. doi:10.2307/1411

    Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254. doi:10.1016/j.funeco.2009.12.001

    Google Scholar 

  • Gehring CA, Ji B, Fong S, Whitham TG (2014) Hybridization in Populus alters the species composition and interactions of root-colonizing fungi: consequences for host plant performance. Botany 92:287–293. doi:10.1139/cjb-2013-0174

    Google Scholar 

  • Gessner MO, Schieferstein B, Müller U, Barkmann S, Lenfers UA (1996) A partial budget of primary organic carbon flows in the littoral zone of a hardwater lake. Aquat Bot 55:93–105

    Google Scholar 

  • Grawe GF, de Oliveira TR, de Andrade Narciso E, Moccelini SK, Terezo AJ, Soares MA, Castilho M (2015) Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus. Biosens Bioelectron 63:407–413. doi:10.1016/j.bios.2014.07.069

    PubMed  CAS  Google Scholar 

  • Guo L, Han L, Yang L et al (2014) Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS ONE. doi:10.1371/journal.pone.0095543

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Haslam SM (1972) Biological flora of the British Isles: Phragmites communis Trin. J Ecol 60:585–610

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    PubMed  CAS  Google Scholar 

  • Hipol RM, Cuevas VC (2014) Copper tolerance and copper accumulation of culturable endophytic yeasts of Phragmites australis cav. (trin) ex steud. from the mine tailings pond in Mankayan, Benguet, Philippines. Asian J Appl Sci 2:636–643

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The World’s Worst Weeds: distribution and biology. The University Press of Hawaii, Honolulu

    Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Welzel WW, Seissitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jean L, De M (1997) Constructed wetlands for sludge dewatering. Water Sci Technol 35:279–285

    Google Scholar 

  • Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10:177–190

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Google Scholar 

  • Kettenring KM, Mock KE (2012) Genetic diversity, reproduction mode, and dispersal differ between cryptic invader, Phragmites australis, and its native conspecific. Biol Invasions 14:2489–2504. doi:10.1007/s10530-012-0246-5

    Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861. doi:10.1016/j.plaphy.2011.03.005

    PubMed  CAS  Google Scholar 

  • Kim H, You YH, Yoon H, Seo Y, Kim YE, Choo YS, Lee IJ, Shin JH, Kim JG (2014) Culturable fungal endophytes isolated from the roots of coastal plants inhabiting Korean east coast. Mycobiology 42:100–108. doi:10.5941/MYCO.2014.42.2.100

    PubMed  PubMed Central  Google Scholar 

  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228

    PubMed  Google Scholar 

  • Kleczewski MM, Bauer JT, Bever JD, Clay K, Reynolds HL (2012) A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol 5:521–529. doi:10.1016/j.funeco.2011.12.006

    Google Scholar 

  • Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, McCormick MK, Nelson E, Torres M, White J, Wilcox DA (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 6:1–14. doi:10.3389/fmicb.2015.00095

    Google Scholar 

  • Kuldau GA, Yates IE (2000) Evidence for Fusarium endophytes in cultivated and wild plants. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 85–117

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lambertini C, Gustafsson MH, Frydenberg J, Lissner J, Speranza M, Brix H (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst Evol 258:161–182

    Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MH, Olesen B, Riis T, Sorrell BK, Brix H (2012) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99:538–551. doi:10.3732/ajb.1100396

    PubMed  CAS  Google Scholar 

  • Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu wetland (China). FEMS Microbiol Lett 309:84–93. doi:10.1111/j.1574-6968.2010.02015.x

    PubMed  CAS  Google Scholar 

  • Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012a) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol 5:309–315. doi:10.1016/j.funeco.2011.06.002

    Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18. doi:10.1007/s13225-012-0165-x

    Google Scholar 

  • Lissner J, Schierup HH, Comin FA, Astorga V (1999a) Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquat Bot 64:317–333

    CAS  Google Scholar 

  • Lissner J, Schierup HH, Comin FA, Astorga V (1999b) Effect of climate on the salt tolerance of two Phragmites australis populations. II. Diurnal CO2 exchange and transpiration. Aquat Bot 64:335–350

    CAS  Google Scholar 

  • Márquez SS, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297. doi:10.1016/j.funeco.2010.12.001

    Google Scholar 

  • McLean EO (1982) Soil pH and lime requirement. In: Page AL, Miller LH, Keeney DR (eds) Chemical and microbiological properties. Methods of soil analysis. Part 2, 2nd edn. American Society of Agronomy, Madison, WI

  • Meyerson LA, Cronin JT (2013) Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biol Invasions 15:2605–2608. doi:10.1007/s10530-013-0491-2

    Google Scholar 

  • Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S (2000) A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecol Manag. doi:10.1023/A:1008432200133

    Article  Google Scholar 

  • Meyerson L, Saltonstall K, Chambers R (2009) Phragmites australis in eastern North America: a historical and ecological perspective. In: Silliman BR, Gorsholz T, Bertness M (eds) Human impacts in salt marshes: a global perspective. California Press, Oakland

    Google Scholar 

  • Meyerson LA, Lambertini C, McCormick MK, Whigham DF (2012) Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants. doi:10.1093/aobpla/pls022

    Article  PubMed  PubMed Central  Google Scholar 

  • Mielniczuk E, Kiecana I, Perkowski J (2004) Susceptibility of oat genotypes to Fusarium crookwelense Burgess, Nelson and Toussoun infection and mycotoxin accumulation in kernels. Biologia 59:809–816

    CAS  Google Scholar 

  • Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Núñez MA, Armas C (2015) Fungal endophytes associated with roots of nurse cushion species have positive effects on native and invasive beneficiary plants in an alpine ecosystem. Perspect Plant Ecol 17:218–226

    Google Scholar 

  • Moricca S, Ginetti B, Ragazzi A (2012) Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathol Mediterr 51:587–598

    Google Scholar 

  • Morris MH, Smith ME, Rizzo DM, Rejmánek M (2008) Bledsoe CS (2008) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176. doi:10.1111/j.1469-8137.2007.02348.x

    PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    PubMed  CAS  Google Scholar 

  • Neubert K, Mendgen K, Brinkman H, Wirsel SGR (2006) Only few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    PubMed  Google Scholar 

  • Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–1224

    PubMed  Google Scholar 

  • Pawłowska J, Wilk M, Śliwińska-Wyrzychowska A, Mętrak M, Wrzosek M (2014) The diversity of endophytic fungi in the above-ground tissue of two Lycopodium species in Poland. Symbiosis 63:87–97. doi:10.1007/s13199-014-0291-1

    PubMed  PubMed Central  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. doi:10.1016/0022-5193(66)90013-0

    Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    CAS  Google Scholar 

  • Quan WM, Han JD, Shen AL, Ping XY, Qian PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64:21–37

    PubMed  CAS  Google Scholar 

  • R Core Team (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    PubMed  CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6(7):e14823. doi:10.1371/journal.pone.0014823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    PubMed  Google Scholar 

  • Reinhart KO, Van der Putten WH, Tytgat T, Clay K (2010) Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytol 186:484–495

    PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. doi:10.1111/j.1469-8137.2009.02773.x/pdf

    PubMed  CAS  Google Scholar 

  • Rudgers JA, Dereske LB, Crawford KM, Emery SM (2015) Fungal symbiont effects on dune plant diversity depend on precipitation. J Ecol 103:219–230. doi:10.1111/1365-2745.12338

    Google Scholar 

  • Sabzalian MR, Mirlohi A (2010) Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J Plant Nutr Soil Sci 173:952–957

    Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5. doi:10.1016/j.agee.2012.12.002

    Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sandberg D, Battista L, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747

    PubMed  PubMed Central  Google Scholar 

  • Santos LV, de Queiroz MV, Santana MF, Soares MA, de Barros EG, de Araújo EF, Langin T (2012) Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J Microbiol Biotechnol 28:1087–1095. doi:10.1007/s11274-011-0909-x

    PubMed  Google Scholar 

  • Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:1–11. doi:10.3389/fpls.2015.00083

    Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle CJ, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Google Scholar 

  • Serghat S, Mradmi K, Touhami AO, Douira A (2005) Rice leaf pathogenic fungi on wheat, oat, Echinochloa phyllopogon and Phragmites australis. Phytopathol Mediterr 44:44–49

    Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol. doi:10.1111/j.1523-1739.2004.00112.x

    Article  Google Scholar 

  • Sim CSF, Tan WS, Ting ASY (2015) Endophytes from Phragmites for metal removal: evaluating their metal tolerance, adaptive tolerance behaviour and biosorption efficacy. Desalination Water Treat. doi:10.1080/19443994.2015.1013507

    Article  Google Scholar 

  • Smith AP, Chen D, Chalk PM (2009) N2 fixation by faba bean (Vicia faba L.) in a gypsum-amended sodic soil. Biol Fertil Soils 45:329–333

    Google Scholar 

  • Soares MA, Li HY, Bergen M, Silva JM, Kowalski KP, White JF (2015) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant Soil. doi:10.1007/s11104-015-2638-7

    Article  Google Scholar 

  • Soukup A, Votrubova O, Cizkova H (2002) Development of anatomical structure of roots of Phragmites australis. New Phytol 153:277–287

    Google Scholar 

  • Spellerberg IF, Fedor PJ (2003) A tribute to Cluade Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity, and the “ShannonWiener” Index. Glob Ecol Biogeogr 12:177–179. doi:10.1046/j.1466-822X.2003.00015.x

    Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    CAS  Google Scholar 

  • Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5:624–632. doi:10.1016/j.funeco.2012.04.001

    Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Rajulu MBG, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodivers Conserv 20:913–928

    Google Scholar 

  • Szécsi Á, Magyar D, Tóth S, Szõke C (2013) Poaceae: a rich source of endophytic fusaria. Acta Phytopathol Entomol Hung. doi:10.1556/APhyt.48.2013.1.2

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    PubMed  PubMed Central  CAS  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84. doi:10.3389/fpls.2015.00084

    PubMed  PubMed Central  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    PubMed  Google Scholar 

  • Van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37

    PubMed  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005) Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia 80:173–197

    Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051

    PubMed  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Google Scholar 

  • Vymazal J, Krőpfelova L (2005) Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 25:606–621. doi:10.1016/j.ecoleng.2005.07.005

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391. doi:10.1073/pnas.0504423102

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfald DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Windham L, Meyerson LA (2003) Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26:452–464

    Google Scholar 

  • Wirsel SGR, Leibinger W, Ernst M, Mendgen K (2001) Genetic diversity of fungi closely associated with common reed. New Phytol 149:589–598

    PubMed  CAS  Google Scholar 

  • Yin L, Ren A, Wei M, Wu L, Zhou Y, Li X, Gao Y (2014) Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int J Phytorem 16:235–246. doi:10.1080/15226514.2013.773275

    CAS  Google Scholar 

  • You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in suncheon bay. J Microbiol Biotechnol 22:1549–1556

    PubMed  Google Scholar 

  • Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH (2012) Diversity and antimicrobial activity of culturable fungi isolated from six species of the south China sea gorgonians. Microb Ecol 64:617–627. doi:10.1007/s00248-012-0050-x

    PubMed  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Federal University of Mato Grosso (UFMT), Department of Plant Biology and Pathology of Rutgers University; The Brazilian National Council for Scientific and Technological Development (CNPq) for Post Doctoral Fellowship; International Institute of Science and Technology in Wetlands (INAU). The authors are also grateful to support from the John E. and Christina C. Craighead Foundation, USDA-NIFA Multistate Project W3147 and the New Jersey Agricultural Experiment Station. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This article is Contribution 1957 of the USGS Great Lakes Science Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcos Antônio Soares or James Francis White.

Additional information

Guest editors: Laura A. Meyerson and Kristin Saltonstall/Phragmites invasion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soares, M.A., Li, HY., Kowalski, K.P. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol Invasions 18, 2689–2702 (2016). https://doi.org/10.1007/s10530-016-1160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1160-z

Keywords

  • Phragmites australis
  • Invasive
  • Endophytic fungi
  • Heavy metal
  • Salt stress