Skip to main content

Phragmites australis: How do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange?

Abstract

It has been suggested that in plant invasions, species may develop intrinsically higher gas exchange and growth rates, and greater nitrogen uptake and allocation to shoots, in their invasive range than in their native habitat under excess nutrients. In this study, native populations of two old world Phragmites australis phylogeographic groups (EU and MED) were compared with their invasive populations in North America [NAint (M) and NAint (Delta)] under unlimited nutrient availability and identical environmental conditions in a common garden. We expected that both introduced groups would have higher growth, nitrogen uptake and allocation, and gas exchange rates than their native groups, but that these enhanced traits would have evolved in different ways in the two introduced ranges, because of different evolutionary histories. Biomass, leaf area, leaf nitrogen concentrations (NH4 + and NO3 ) and transpiration rates increased in introduced versus native groups, whereas differences in SLA, leaf pigment concentrations and assimilation rates were due to phylogeographic origins. Despite intrinsic differences in the allocation of C and N in leaves, shoots and rhizome due to phylogeographic origin, the introduced groups invested more biomass in above-ground tissues than roots and rhizomes. Our results support the concept that invasive populations develop enhanced morphological, physiological and biomass traits in their new ranges that may assist their competiveness under nutrient-enriched conditions, however the ecophysiological processes leading to these changes can be different and depend on the evolutionary history of the genotypes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alpert P, Maron JL (2000) Carbon addition as a countermeasure against biological invasion by plants. Biol Invasions 2:33–40

    Google Scholar 

  • Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants—a hypothesis. J Ecol 83:887–889. doi:10.2307/2261425

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Plant Physiol 28:355–377

    CAS  Google Scholar 

  • Brix H (1999) Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis)—introduction. Aquat Bot 64:179–184

    Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353

    Google Scholar 

  • Caplan JS, Wheaton CN, Mozdzer TJ (2014) Belowground advantages in construction cost facilitate a cryptic plant invasion. AoB Plants. doi:10.1093/aobpla/plu020

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevering OA (1998) An investigation into the effects of nitrogen on growth and morphology of stable and die-back populations of Phragmites australis. Aquat Bot 60:11–25. doi:10.1016/S0304-3770(97)00069-7

    Google Scholar 

  • Clevering OA, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64:185–208. doi:10.1016/S0304-3770(99)00059-5

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • Eller F, Brix H (2012) Different genotypes of Phragmites australis show distinct phenotypic plasticity in response to nutrient availability and temperature. Aquat Bot 103:89–97. doi:10.1016/j.aquabot.2012.07.001

    Google Scholar 

  • Eller F, Lambertini C, Nguyen LX, Achenbach L, Brix H (2013) Interactive effects of elevated temperature and CO2 on two phylogeographically distinct clones of common reed (Phragmites australis). AoB Plants. doi:10.1093/aobpla/pls051

    Article  PubMed Central  Google Scholar 

  • Eller F, Lambertini C, Nguyen LX, Brix H (2014) Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Glob Chang Biol 20:531–543. doi:10.1111/gcb.12346

    PubMed  Google Scholar 

  • Emery NC, Ewanchuk PJ, Bertness MD (2001) Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82:2471–2485

    Google Scholar 

  • Fenn ME et al (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses and management implications. Ecol Appl 8:706–733

    Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755

    Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Google Scholar 

  • Grotkopp E, Rejmanék M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526–532

    PubMed  Google Scholar 

  • Gulías J, Flexas J, Mus M, Cifre J, Lefi E, Medrano H (2003) Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf area in Balearic endemic and non-endemic Mediterranean species. Ann Bot 92:215–222

    PubMed  PubMed Central  Google Scholar 

  • Guo WY, Lambertini C, Nguyen LX, Li XZ, Brix H (2014) Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol Evol 4:4567–4577. doi:10.1002/ece3.1286

    PubMed  PubMed Central  Google Scholar 

  • Haslam SM (1972) Phragmites Communis Trin. (Arundo Phragmites L.,? Phragmites Australis (Cav.) Trin. ex Steudel). J Ecol 60:585–610. doi:10.2307/2258363

    Google Scholar 

  • Horchani F, R’Bia O, Hajri R, Aschi-Smiti S (2011) Nitrogen nutrition and ammonium toxicity in higher plants. Int J Bot 7:1–16

    CAS  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    PubMed  CAS  Google Scholar 

  • Konnerup D, Brix H (2010) Nitrogen nutrition of Canna indica: effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquat Bot 92:142–148. doi:10.1016/j.aquabot.2009.11.004

    CAS  Google Scholar 

  • Lambers H, Poorter H (2004) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. In: Begon M, Fitter AH (eds) Advances in ecological research, vol 34. Academic Press, pp 283–362. doi:10.1016/S0065-2504(03)34004-8

  • Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M, Brix H (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst Evol 258:161–182. doi:10.1007/s00606-006-0412-2

    Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MH, Olesen B, Riis T, Sorrell BK, Brix H (2012a) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99:538–551. doi:10.3732/ajb.1100396

    PubMed  CAS  Google Scholar 

  • Lambertini C, Sorrell BK, Riis T, Olesen B, Brix H (2012b) Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants 2012:pls020. doi:10.1093/aobpla/pls020

    PubMed  PubMed Central  Google Scholar 

  • Leishman MR, Cooke J, Richardson DM, Newman J (2014) Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants. J Ecol 102:1451–1461. doi:10.1111/1365-2745.12318

    PubMed  PubMed Central  Google Scholar 

  • Lessmann JM, Brix H, Bauer V, Clevering OA, Comín FA (2001) Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquat Bot 69:109–126

    CAS  Google Scholar 

  • Levine JM, Brewer JS, Bertness MD (1998) Nutrients, competition and plant zonation in a New England salt marsh. J Ecol 86:285–292

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    CAS  Google Scholar 

  • Lobo FdA et al (2013) Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51:445–456. doi:10.1007/s11099-013-0045-y

    CAS  Google Scholar 

  • Lu Z, Percy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460. doi:10.1093/jxb/49.Special_Issue.453

    Google Scholar 

  • Maron JL, Marler M (2008) Field-based competitive impacts between invaders and natives at varying resource supply. J Ecol 96:1187–1197. doi:10.1111/j.1365-2745.2008.01440.x

    Google Scholar 

  • Matimati I, Verboom GA, Cramer MD (2014) Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. J Exp Bot 65:159–168. doi:10.1093/jxb/ert367

    PubMed  CAS  Google Scholar 

  • McDowell SCL (2002) Photosynthetic characteristics of invasive and non invasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438

    PubMed  Google Scholar 

  • Meyerson LA, Saltonstall K, Chambers RM (2009) Phragmites australis in eastern North America: a historical and ecological perspective. Salt marshes under global siege. University of California Press, California

    Google Scholar 

  • Monaco TA, Sheley RL (2012) Invasive plant ecology and management: linking processes to practice. CABI, Wallingford

    Google Scholar 

  • Mooney HA, Ferrar PJ, Slatyer RO (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36:103–111

    PubMed  CAS  Google Scholar 

  • Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458. doi:10.1111/j.1365-2745.2009.01625.x

    Google Scholar 

  • Nguyen LX, Lambertini C, Sorrell BK, Eller F, Achenbach L, Brix H (2013) Photosynthesis of co-existing Phragmites haplotypes in their non-native range: Are characteristics determined by adaptations derived from their native origin? AoB Plants 5:plt016. doi:10.1093/aobpla/plt016

    PubMed Central  Google Scholar 

  • Piwpuan N, Zhai X, Brix H (2013) Nitrogen nutrition of Cyperus laevigatus and Phormium tenax: effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics. Aquat Bot 106:42–51. doi:10.1016/j.aquabot.2013.01.002

    CAS  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differ-ing in relative growth rate. Oecologia 83:553–559

    PubMed  Google Scholar 

  • Prioul JL, Chartier P (1977) Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation a critical analysis of the methods used. Ann Bot 41:789–800

    Google Scholar 

  • Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050

    Google Scholar 

  • Sheley R, James J, Smith B, Vasquez E (2010) Applying ecologically based invasive-plant management. Rangel Ecol Manag 63:605–613

    Google Scholar 

  • Sorrell BK, Brix H, Fitridge I, Konnerup D, Lambertini C (2012) Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species. Aquat Bot 103:37–47. doi:10.1016/j.aquabot.2012.05.008

    CAS  Google Scholar 

  • Suding KN et al (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392. doi:10.1073/pnas.0408648102

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Appl Ecol 41:139–150

    CAS  Google Scholar 

  • Tylova-Munzarova E, Lorenzen B, Brix H, Votrubova O (2005) The effects of NH4 + and NO3 on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquat Bot 81:326–342. doi:10.1016/j.aquabot.2005.01.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Helge Bulow and staff at the Påskehøjgård research farm for assistance with plant growth and propagation. This study was funded by the European Union ERA-NET Plus on Climate Smart Agriculture project CINDERELLA (Comparative analysis, INtegration anD ExemplaRy implEmentation of cLimate smart LAnd use practices on organic soils: Progressing paludicultures after centuries of peatland destruction and neglect).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Truong Tho.

Additional information

Guest editors: Laura A. Meyerson and Kristin Saltonstall/Phragmites invasion.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (EPS 132 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tho, B.T., Sorrell, B.K., Lambertini, C. et al. Phragmites australis: How do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange?. Biol Invasions 18, 2563–2576 (2016). https://doi.org/10.1007/s10530-016-1158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1158-6

Keywords

  • Ecophysiology
  • Nitrogen enrichment
  • Biomass allocation
  • Genotypes
  • Invasive range
  • Nitrogen allocation
  • Growth strategy
  • Indigenous species