Skip to main content
Log in

A predictive model for water clarity following dreissenid invasion

Biological Invasions Aims and scope Submit manuscript

Abstract

Optical transparency, or water clarity, is a fundamental property of lake ecosystems which influences a wide range of physical, chemical and biological variables and processes. The establishment of non-native dreissenid mussels in lake and river ecosystems across North America and Europe has been associated with often dramatic, but highly variable, increases in water clarity. The objective of this study was to develop a predictive model for water clarity (Secchi depth, m) in lakes following the establishment of dreissenids. We compiled water clarity data before and after dreissenid invasion from North American lakes that varied in size and nutrient status. An AIC model averaging approach was used to generate post-invasion water clarity predictions based on pre-invasion water clarity and lake morphometric characteristics from a 53 lake dataset. The accuracy of the model was verified using cross-validation. We then extended this model to existing empirical models of lake mixing depth and Walleye (Sander vitreus) yield, to demonstrate that increased water clarity associated with dreissenid invasion may have far-reaching physical and ecological consequences in lakes, including deeper thermoclines and context-dependent changes in fish yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Ckaski F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiado, pp 267–281

  • Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74(6):1175–1178. doi:10.2193/2009-367

    Article  Google Scholar 

  • Benson AJ (2013) Chronological history of zebra and quagga mussels (Dreissenidae) in North America, 1988–2010. In: Nalepa T, Schloesser D (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 9–31

    Chapter  Google Scholar 

  • Bootsma HA, Liao Q (2013) Nutrient cycling by dreissnenid mussels: controlling factors and ecosystem responses. In: Nalepa T, Schloesser D (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 555–574

    Chapter  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin

    Google Scholar 

  • Cha Y, Stow CA, Bernhardt ES (2013) Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshw Biol 58:192–206. doi:10.1111/fwb.12050

    Article  CAS  Google Scholar 

  • Diehl S (2002) Phytoplankton, light and nutrients in a gradient of mixing depths: theory. Ecology 83(2):386–398. doi:10.2307/2680022

    Article  Google Scholar 

  • Fee EJ (1979) A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol Oceanogr 24(3):401–416. doi:10.4319/lo.1979.24.3.0401

    Article  CAS  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920. doi:10.4319/lo.1996.41.5.0912

    Article  CAS  Google Scholar 

  • Fisheries and Oceans Canada (2010) 2010 Survey of recreational fishing in Canada [online]. http://www.dfo-mpo.gc.ca/stats/rec/canada-rec-eng.htm. Accessed 10 Nov 2014

  • Hanna M (1990) Evaluation of models predicting mixing depth. Can J Fish Aquat Sci 47:940–947. doi:10.1139/f90-108

    Article  Google Scholar 

  • Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293. doi:10.1139/f04-065

    Article  CAS  Google Scholar 

  • Higgins SN (2013) Meta-analysis of dreissenids effects on freshwater ecosystems. In: Nalepa TF, Schloesser DW (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 487–494

    Chapter  Google Scholar 

  • Higgins SN, Vander Zanden MJ (2010) What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80:179–196. doi:10.1890/09-1249.1

    Article  Google Scholar 

  • Higgins SN, Vander Zanden MJ, Joppa LN, Vadeboncoeur Y (2011) The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ratio in north-temperate lakes. Can J Fish Aquat Sci 68:319–329. doi:10.1139/F10-134

    Article  CAS  Google Scholar 

  • Higgins SN, Althouse B, Devlin SP, Vadeboncoeur Y, Vander Zanden MJ (2014) Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95:2257–2267. doi:10.1890/13-2333.1

    Article  PubMed  Google Scholar 

  • Jacobson PC, Cross TK, Zandlo J, Pereira DP (2012) The effects of climate change and eutrophication on cisco Coregonus artedi abundance in Minnesota lakes. Adv Limnol 63:417–427. doi:10.1127/advlim/63/2012/417

    Google Scholar 

  • Jansen W, Hesslein RH (2004) Potential effects of climate warming on fish habitats in temperate zone lakes with special reference to lake 239 of the experimental lakes area (ELA), North-Western Ontario. Env Biol Fishes 70:1–22. doi:10.1023/B:EBFI.0000023035.06554.c7

    Article  Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK (2015) Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746:97–112. doi:10.1007/s10750-014-1901-x

    Article  CAS  Google Scholar 

  • Kelly PT, Craig N, Solomon CT, Weidel BC, Zwart JA, Jones SE (2016) Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob Change Biol. doi:10.1111/gcb.13260

    Google Scholar 

  • Kinnunen RW (2003) Great lakes commercial fisheries. Michigan Sea Grant Extension, Marquette

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA (2004) Light and temperature: key factors affecting Walleye abundance and production. Trans Am Fish Soc 133:588–605. doi:10.1577/T02-111.1

    Article  Google Scholar 

  • MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299. doi:10.1093/icb/36.3.287

    Article  Google Scholar 

  • Mazumder A, Taylor WD, McQueen DJ, Lean DRS (1990) Effects of fish and plankton on lake temperature and mixing depth. Science 247:312–315. doi:10.1126/science.247.4940.312

    Article  CAS  PubMed  Google Scholar 

  • Phosphorus Management Strategies Task Force (1980) Phosphorus management for the Great Lakes. Final report to the great lakes water quality board and the great lakes science advisory board. International Joint Commission, Windsor

  • Plumb JM, Blanchfield PJ (2009) Performance of temperature and dissolved oxygen criteria to predict habitat use by lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 66:2011–2023. doi:10.1139/F09-129

    Article  CAS  Google Scholar 

  • Ptacnik R, Diehl S, Berger S (2003) Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48(5):1903–1912. doi:10.4319/lo.2003.48.5.1903

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. http://www.R-project.org. Accessed 26 Oct 2012

  • Rennie MD, Collins NC, Purchase CF, Tremblay A (2005) Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes. Can J Fish Aquat Sci 62:2770–2783. doi:10.1139/f05-181

    Article  CAS  Google Scholar 

  • Rennie MD, Sprules WG, Johnson TG (2009) Resource switching in fish following a major food web disruption. Oecologia 159:789–802. doi:10.1007/s00442-008-1271-z

    Article  PubMed  Google Scholar 

  • Rennie MD, Johnson TB, Sprules WG (2012) Energy acquisition and allocation patterns of lake whitefish (Coregonus clupeaformis) are modified when dreissenids are present. Can J Fish Aquat Sci 69:41–59. doi:10.1139/f2011-126

    Article  Google Scholar 

  • Rennie MD, Evans DO, Young JD (2013) Increased dependence on nearshore benthic resources in the Lake Simcoe ecosystem after dreissenid invasion. Inland Waters 3:297–310. doi:10.5268/IW-3.2.540

    Article  Google Scholar 

  • Rennie MD, Weidel BC, Claramunt RM, Dunlop ES (2015) Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design. J Great Lakes Res 41:1150–1161. doi:10.1016/j.jglr.2015.09.014

    Article  Google Scholar 

  • Ryder RA (1977) Effects of ambient light variations on behavior of yearling, subadult and adult Walleyes (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1481–1491. doi:10.1139/f77-213

    Article  Google Scholar 

  • Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, Schindler EU, Stainton MP (1996) The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41(5):1004–1017. doi:10.4319/lo.1996.41.5.1004

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practices of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Strayer DL, Caraco NF, Cole JF, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves. Bioscience 49:19–27

    Article  Google Scholar 

  • Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Klaff J (2008) Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61:526–537. doi:10.1525/bio.2011.61.7.7

    Article  Google Scholar 

  • Vanderploeg HA, Nalepa TF, Jude DJ, Mills EL, Holeck KT, Liebig JR, Grigorovich IA, Ojaveer H (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Can J Fish Aquat Sci 59:1209–1228. doi:10.1139/F02-087

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846. doi:10.1016/j.patcog.2015.03.009

    Article  Google Scholar 

  • Yu N, Culver DA (2000) Can zebra mussels change stratification patterns in a small reservoir? Hydrobiologia 431:175–184. doi:10.1023/A:1004092229180

    Article  CAS  Google Scholar 

  • Zuur A, Hilbe JM, Ieno EN (2013) A beginner’s guide to GLM and GLMM in R: a frequentist and Bayesian perspective for ecologists. Highland Statistics Ltd., Newburgh

    Google Scholar 

Download references

Acknowledgments

Many individuals and organizations assisted with the provision of data for this project, including the US Environmental Protection Agency, Minnesota Pollution Control Agency, Michigan and Wisconsin Departments of Natural Resources, J. Young and H. Jarjanazi (OMOECC), S. Sandstrom and M. (OMNRF), J. Halfman (Hobart and William Smith Colleges), L. Rudstam and R. Jackson (Cornell University). Financial support was provided by Fisheries and Oceans Canada to M.D.R. and the Experimental Lakes Area Graduate Fellowship and Major G.E.H. Barrett-Hamilton Memorial Scholarship to M.E.G. We acknowledge the input from H. MacIsaac, D. Strayer and two anonymous reviewers in helping prepare this manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne E. Geisler.

Appendices

Appendix 1

See Table 3.

Table 3 List of freshwater lakes (n = 62) included in analysis of dreissenid effects

Appendix 2

See Table 4.

Table 4 Table 2 from (Lester et al. 2004)

Appendix 3

Predictive equations of thermal-optical habitat area and walleye yield based on (Lester et al. 2004).

This Appendix describes the formulae developed by Lester et al. (2004) to estimate walleye thermal-optical habitat area (TOHA, ha) and yield (kg/ha/yr).

Walleye thermal-optical habitat area

TOHA was approximated as

$${{\text{TOHA} = ({\text {GDD}} - 623)}}^{ 0. 7 3} {\text{Area P}}_{\text{T}} {\text{z}}_{\text{rel}} {\text{e}}^{{ -{\text{ z}}_{\text{rel}} / 0. 1 2w}}$$
(8)

where GDD = growing degree days (°C), Area = lake surface area (ha), PT = proportion of lake area above the thermocline, zrel = relative Secchi depth of the epibenthic zone (m) and w = water clarity parameter (set to 2.12, Lester et al. 2004).

Relative Secchi depth of the epibenthic zone (zrel) is calculated as

$${\text{z}}_{\text{rel}} = \frac{{{\text{z}}_{ \sec } }}{{{\text{z}}_{\text{T}} ( 1 - {\text{e}}^{{{ - }s}} )}}$$
(9)

where zsec = Secchi depth (m), zT = thermocline depth, or maximum depth of the epibenthic zone (m) and s = basin shape parameter of the epibenthic zone.Basin shape (s) of the epibenthic zone is calculated as

$$s = \frac{{3{\text{r}} + ({\text{r}}^{2} + 8{\text{r}})^{0.5} }}{{4(1 - {\text{r}})}}$$
(10)

where \({\text{r = }}\frac{{{\text{z}}_{\text{E}} }}{{{\text{z}}_{\text{T}} }}\), where zE = mean depth of the epibenthic zone (m) and zT = thermocline depth (m). In mixed lakes, zT = zmax or maximum depth.

Walleye yield

Yield was approximated as

$${\text{Yield }} = \, 0.011\frac{\text{TOHA}}{\text{Area}} {\,\text{TDS}}^{0.534}$$
(11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geisler, M.E., Rennie, M.D., Gillis, D.M. et al. A predictive model for water clarity following dreissenid invasion. Biol Invasions 18, 1989–2006 (2016). https://doi.org/10.1007/s10530-016-1146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1146-x

Keywords

Navigation