Biological Invasions

, Volume 18, Issue 7, pp 1989–2006 | Cite as

A predictive model for water clarity following dreissenid invasion

  • Marianne E. Geisler
  • Michael D. Rennie
  • Darren M. Gillis
  • Scott N. Higgins
Original Paper


Optical transparency, or water clarity, is a fundamental property of lake ecosystems which influences a wide range of physical, chemical and biological variables and processes. The establishment of non-native dreissenid mussels in lake and river ecosystems across North America and Europe has been associated with often dramatic, but highly variable, increases in water clarity. The objective of this study was to develop a predictive model for water clarity (Secchi depth, m) in lakes following the establishment of dreissenids. We compiled water clarity data before and after dreissenid invasion from North American lakes that varied in size and nutrient status. An AIC model averaging approach was used to generate post-invasion water clarity predictions based on pre-invasion water clarity and lake morphometric characteristics from a 53 lake dataset. The accuracy of the model was verified using cross-validation. We then extended this model to existing empirical models of lake mixing depth and Walleye (Sander vitreus) yield, to demonstrate that increased water clarity associated with dreissenid invasion may have far-reaching physical and ecological consequences in lakes, including deeper thermoclines and context-dependent changes in fish yields.


Dreissena Mussel Transparency Thermal stratification Sander vitreus Ecological modelling 



Many individuals and organizations assisted with the provision of data for this project, including the US Environmental Protection Agency, Minnesota Pollution Control Agency, Michigan and Wisconsin Departments of Natural Resources, J. Young and H. Jarjanazi (OMOECC), S. Sandstrom and M. (OMNRF), J. Halfman (Hobart and William Smith Colleges), L. Rudstam and R. Jackson (Cornell University). Financial support was provided by Fisheries and Oceans Canada to M.D.R. and the Experimental Lakes Area Graduate Fellowship and Major G.E.H. Barrett-Hamilton Memorial Scholarship to M.E.G. We acknowledge the input from H. MacIsaac, D. Strayer and two anonymous reviewers in helping prepare this manuscript for publication.


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Ckaski F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiado, pp 267–281Google Scholar
  2. Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  3. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74(6):1175–1178. doi: 10.2193/2009-367 CrossRefGoogle Scholar
  4. Benson AJ (2013) Chronological history of zebra and quagga mussels (Dreissenidae) in North America, 1988–2010. In: Nalepa T, Schloesser D (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 9–31CrossRefGoogle Scholar
  5. Bootsma HA, Liao Q (2013) Nutrient cycling by dreissnenid mussels: controlling factors and ecosystem responses. In: Nalepa T, Schloesser D (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 555–574CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, BerlinGoogle Scholar
  7. Cha Y, Stow CA, Bernhardt ES (2013) Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshw Biol 58:192–206. doi: 10.1111/fwb.12050 CrossRefGoogle Scholar
  8. Diehl S (2002) Phytoplankton, light and nutrients in a gradient of mixing depths: theory. Ecology 83(2):386–398. doi: 10.2307/2680022 CrossRefGoogle Scholar
  9. Fee EJ (1979) A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol Oceanogr 24(3):401–416. doi: 10.4319/lo.1979.24.3.0401 CrossRefGoogle Scholar
  10. Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920. doi: 10.4319/lo.1996.41.5.0912 CrossRefGoogle Scholar
  11. Fisheries and Oceans Canada (2010) 2010 Survey of recreational fishing in Canada [online]. Accessed 10 Nov 2014
  12. Hanna M (1990) Evaluation of models predicting mixing depth. Can J Fish Aquat Sci 47:940–947. doi: 10.1139/f90-108 CrossRefGoogle Scholar
  13. Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293. doi: 10.1139/f04-065 CrossRefGoogle Scholar
  14. Higgins SN (2013) Meta-analysis of dreissenids effects on freshwater ecosystems. In: Nalepa TF, Schloesser DW (eds) Quagga and zebra mussels: biology, impacts, and control, 2nd edn. Taylor & Francis, London, pp 487–494CrossRefGoogle Scholar
  15. Higgins SN, Vander Zanden MJ (2010) What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80:179–196. doi: 10.1890/09-1249.1 CrossRefGoogle Scholar
  16. Higgins SN, Vander Zanden MJ, Joppa LN, Vadeboncoeur Y (2011) The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ratio in north-temperate lakes. Can J Fish Aquat Sci 68:319–329. doi: 10.1139/F10-134 CrossRefGoogle Scholar
  17. Higgins SN, Althouse B, Devlin SP, Vadeboncoeur Y, Vander Zanden MJ (2014) Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95:2257–2267. doi: 10.1890/13-2333.1 CrossRefPubMedGoogle Scholar
  18. Jacobson PC, Cross TK, Zandlo J, Pereira DP (2012) The effects of climate change and eutrophication on cisco Coregonus artedi abundance in Minnesota lakes. Adv Limnol 63:417–427. doi: 10.1127/advlim/63/2012/417 Google Scholar
  19. Jansen W, Hesslein RH (2004) Potential effects of climate warming on fish habitats in temperate zone lakes with special reference to lake 239 of the experimental lakes area (ELA), North-Western Ontario. Env Biol Fishes 70:1–22. doi: 10.1023/B:EBFI.0000023035.06554.c7 CrossRefGoogle Scholar
  20. Karatayev AY, Burlakova LE, Padilla DK (2015) Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746:97–112. doi: 10.1007/s10750-014-1901-x CrossRefGoogle Scholar
  21. Kelly PT, Craig N, Solomon CT, Weidel BC, Zwart JA, Jones SE (2016) Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob Change Biol. doi: 10.1111/gcb.13260 Google Scholar
  22. Kinnunen RW (2003) Great lakes commercial fisheries. Michigan Sea Grant Extension, MarquetteGoogle Scholar
  23. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA (2004) Light and temperature: key factors affecting Walleye abundance and production. Trans Am Fish Soc 133:588–605. doi: 10.1577/T02-111.1 CrossRefGoogle Scholar
  25. MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299. doi: 10.1093/icb/36.3.287 CrossRefGoogle Scholar
  26. Mazumder A, Taylor WD, McQueen DJ, Lean DRS (1990) Effects of fish and plankton on lake temperature and mixing depth. Science 247:312–315. doi: 10.1126/science.247.4940.312 CrossRefPubMedGoogle Scholar
  27. Phosphorus Management Strategies Task Force (1980) Phosphorus management for the Great Lakes. Final report to the great lakes water quality board and the great lakes science advisory board. International Joint Commission, WindsorGoogle Scholar
  28. Plumb JM, Blanchfield PJ (2009) Performance of temperature and dissolved oxygen criteria to predict habitat use by lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 66:2011–2023. doi: 10.1139/F09-129 CrossRefGoogle Scholar
  29. Ptacnik R, Diehl S, Berger S (2003) Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48(5):1903–1912. doi: 10.4319/lo.2003.48.5.1903 CrossRefGoogle Scholar
  30. R Development Core Team (2012) R: a language and environment for statistical computing. Accessed 26 Oct 2012
  31. Rennie MD, Collins NC, Purchase CF, Tremblay A (2005) Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes. Can J Fish Aquat Sci 62:2770–2783. doi: 10.1139/f05-181 CrossRefGoogle Scholar
  32. Rennie MD, Sprules WG, Johnson TG (2009) Resource switching in fish following a major food web disruption. Oecologia 159:789–802. doi: 10.1007/s00442-008-1271-z CrossRefPubMedGoogle Scholar
  33. Rennie MD, Johnson TB, Sprules WG (2012) Energy acquisition and allocation patterns of lake whitefish (Coregonus clupeaformis) are modified when dreissenids are present. Can J Fish Aquat Sci 69:41–59. doi: 10.1139/f2011-126 CrossRefGoogle Scholar
  34. Rennie MD, Evans DO, Young JD (2013) Increased dependence on nearshore benthic resources in the Lake Simcoe ecosystem after dreissenid invasion. Inland Waters 3:297–310. doi: 10.5268/IW-3.2.540 CrossRefGoogle Scholar
  35. Rennie MD, Weidel BC, Claramunt RM, Dunlop ES (2015) Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design. J Great Lakes Res 41:1150–1161. doi: 10.1016/j.jglr.2015.09.014 CrossRefGoogle Scholar
  36. Ryder RA (1977) Effects of ambient light variations on behavior of yearling, subadult and adult Walleyes (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1481–1491. doi: 10.1139/f77-213 CrossRefGoogle Scholar
  37. Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, Schindler EU, Stainton MP (1996) The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41(5):1004–1017. doi: 10.4319/lo.1996.41.5.1004 CrossRefGoogle Scholar
  38. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practices of statistics in biological research, 3rd edn. W.H. Freeman and Company, New YorkGoogle Scholar
  39. Strayer DL, Caraco NF, Cole JF, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves. Bioscience 49:19–27CrossRefGoogle Scholar
  40. Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Klaff J (2008) Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61:526–537. doi: 10.1525/bio.2011.61.7.7 CrossRefGoogle Scholar
  41. Vanderploeg HA, Nalepa TF, Jude DJ, Mills EL, Holeck KT, Liebig JR, Grigorovich IA, Ojaveer H (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Can J Fish Aquat Sci 59:1209–1228. doi: 10.1139/F02-087 CrossRefGoogle Scholar
  42. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, CambridgeGoogle Scholar
  43. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846. doi: 10.1016/j.patcog.2015.03.009 CrossRefGoogle Scholar
  44. Yu N, Culver DA (2000) Can zebra mussels change stratification patterns in a small reservoir? Hydrobiologia 431:175–184. doi: 10.1023/A:1004092229180 CrossRefGoogle Scholar
  45. Zuur A, Hilbe JM, Ieno EN (2013) A beginner’s guide to GLM and GLMM in R: a frequentist and Bayesian perspective for ecologists. Highland Statistics Ltd., NewburghGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marianne E. Geisler
    • 1
  • Michael D. Rennie
    • 1
    • 2
    • 3
  • Darren M. Gillis
    • 1
  • Scott N. Higgins
    • 2
  1. 1.Department of Biological SciencesUniversity of ManitobaWinnipegCanada
  2. 2.IISD-Experimental Lakes Area Inc.WinnipegCanada
  3. 3.Department of BiologyLakehead UniversityThunder BayCanada

Personalised recommendations