Skip to main content

The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges

Abstract

Polyploids are overrepresented in invasive species. Yet, the role of genetic diversity and drift in colonization success of polyploids remains unclear. Here, we investigate genetic diversity, genetic differentiation and small-scale genetic structure in our model system, the three geo-cytotypes of Centaurea stoebe: monocarpic diploids and polycarpic (allo)tetraploids coexist in the native range (Eurasia), but only tetraploids are reported from the invasive range (North America). For each geo-cytotype, we investigated 18–20 populations varying in size and habitat type (natural vs. ruderal). Population genetic analyses were conducted at eight microsatellite loci. Compared to diploids, tetraploids revealed higher genetic diversity and lower genetic differentiation, whereas both were comparable in tetraploids between both ranges. Within spatial distances of a few meters, diploid individuals were more strongly related to one another than tetraploids. In addition, expected heterozygosity in diploids increased with population size and was higher in natural than in ruderal habitats. However, neither relationship was found for tetraploids. The higher genetic diversity of tetraploid C. stoebe may have enhanced its colonization abilities, if genetic diversity is correlated with fitness and adaptive capabilities. Furthermore, the inheritance of a duplicated chromosome set as well as longevity and frequent gene flow reduces drift in tetraploids. This counteracts genetic depletion during initial introductions and in subsequent phases of small or fluctuating population sizes in ruderal habitats. Our findings advocate the importance of studying colonization genetic processes to gain a more mechanistic understanding of the role of polyploidy in invasion dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bates D, Maechler M, Bolker B (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4

  • Blanchet É, Penone C, Maurel N et al (2015) Multivariate analysis of polyploid data reveals the role of railways in the spread of the invasive South African Ragwort (Senecio inaequidens). Conserv Genet 16:523–533

    Article  Google Scholar 

  • Bock DG, Caseys C, Cousens RD et al (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    Article  PubMed  Google Scholar 

  • Bousset L, Pointier J-P, David P, Jarne P (2013) Neither variation loss, nor change in selfing rate is associated with the worldwide invasion of Physa acuta from its native North America. Biol Invasions 16:1769–1783

    Article  Google Scholar 

  • Broennimann O, Mráz P, Petitpierre B et al (2014) Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J Biogeogr 41:1126–1136

    Article  Google Scholar 

  • Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106

    CAS  Article  PubMed  Google Scholar 

  • Clark LV, Jaseniuk M (2011) polysat: an R package for polyploid microsatellite analysis. Mol Ecol Res 11:562–566

    Article  Google Scholar 

  • Comps B, Gömöry D, Letouzey J et al (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corn JG, Story JM, White LJ (2006) Impacts of the biological control agent Cyphocleonus achates on spotted knapweed, Centaurea maculosa, in experimental plots. Biol Control 37:75–81

    Article  Google Scholar 

  • Cosendai A-C, Wagner J, Ladinig U et al (2013) Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110:560–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawley MJ (2014) Statistics: an introduction using R. Wiley, Chichester

    Google Scholar 

  • Development Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367

    Article  PubMed  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    CAS  Article  PubMed  Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eliášová A, Trávníček P, Mandák B, Münzbergová Z (2013) Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Ann Bot 113:159–170

    Article  PubMed  PubMed Central  Google Scholar 

  • EUNIS (2008) European Nature Information System (EUNIS) database: habitat types and habitat classifications. European Topic Centre on Biological Diversity, ETC/BD-EEA, Paris

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  PubMed  Google Scholar 

  • Ferrero V, Barrett SCH, Castro S et al (2015) Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Mol Ecol 24:2143–2155

    Article  PubMed  Google Scholar 

  • Ferriol M, Merle H, Garmendia A (2014) Microsatellite evidence for low genetic diversity and reproductive isolation in tetraploid Centaurea seridis (Asteraceae) coexisting with diploid Centaurea aspera and triploid hybrids in contact zones. Bot J Linn Soc 176:82–98

    Article  Google Scholar 

  • Forsman A (2014) Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. PNAS 111:302–307

    CAS  Article  PubMed  Google Scholar 

  • Fox J, Weisberg S (2010) An R companion to applied regression. SAGE, Thousand Oaks

    Google Scholar 

  • Hahn MA, Buckley YM, Müller-Schärer H (2012) Increased population growth rate in invasive polyploid Centaurea stoebe in a common garden. Ecol Lett 15:947–954

    Article  PubMed  Google Scholar 

  • Hahn MA, Lanz T, Fasel D, Müller-Schärer H (2013) Increased seed survival and seedling emergence in a polyploid plant invader. Am J Bot 100:1555–1561

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2001) Patterns of allozyme variation in diploid and tetraploid Centaurea jacea at different spatial scales. Evolution 55:943–954

    CAS  Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hufbauer RA, Sforza R (2008) Multiple introductions of two invasive Centaurea taxa inferred from cpDNA haplotypes. Divers Distrib 14:252–261

    Article  Google Scholar 

  • Hufbauer RA, Facon B, Ravigné V et al (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5:89–101

    Article  PubMed  Google Scholar 

  • Hufbauer RA, Rutschmann A, Serrate B et al (2013) Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. J Evol Biol 26:1691–1699

    CAS  Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  Article  PubMed  Google Scholar 

  • Kelager A, Pedersen JS, Bruun HH (2012) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141

    Article  Google Scholar 

  • Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731

    CAS  Article  PubMed  Google Scholar 

  • Keller SR, Gilbert KJ, Fields PD, Taylor DR (2012) Bayesian inference of a complex invasion history revealed by nuclear and chloroplast genetic diversity in the colonizing plant, Silene latifolia. Mol Ecol 21:4721–4734

    Article  PubMed  Google Scholar 

  • Maron JL, Waller LP, Hahn MA et al (2013) Effects of soil fungi, disturbance and propagule pressure on exotic plant recruitment and establishment at home and abroad. J Ecol 101:924–932

    Article  Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol Ecol 17:4197–4208

    CAS  Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2013) The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131–137

    CAS  Article  PubMed  Google Scholar 

  • Mráz P, Bourchier RS, Treier U et al (2011) Polyploidy in phenotypic space and invastion context: a morphometric study of Centaurea stoebe s.l. Int J Plant Sci 172:386–402

    Article  Google Scholar 

  • Mráz P, Garcia-Jacas N, Gex-Fabry E et al (2012a) Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae). Mol Phylogenet Evol 62:612–623

    Article  PubMed  Google Scholar 

  • Mráz P, Španiel S, Keller A et al (2012b) Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones. Ann Bot 110:615–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Mráz P, Tarbush E, Müller-Schärer H (2014) Drought tolerance and plasticity in the invasive knapweed Centaurea stoebe s.l. (Asteraceae): effect of populations stronger than those of cytotype and range. Ann Bot 114:289–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    CAS  Article  PubMed  Google Scholar 

  • Ochsmann J (2000) Morphologische und molekularsystematische Untersuchungen an der Centaurea stoebe L.–Gruppe (Asteraceae–Cardueae) in Europa. Dissertationes Botanicae, vol 324. J. Cramer, Berlin

  • Otisková V, Koutecký T, Kolář F, Koutecký P (2014) Occurrence and habitat preferences of diploid and tetraploid cytotypes of Centaurea stoebe in the Czech Republic. Preslia 86:67–80

    Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115

    Article  Google Scholar 

  • Pandit MK, White SM, Pocock MJO (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703

    CAS  Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronfort J, Jenczewski E, Bataillon T, Rousset F (1998) Analysis of population structure in autotetraploid species. Genetics 150:921–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sax DF, Brown JH (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371

    Article  Google Scholar 

  • Schlaepfer DR, Edwards PJ, Widmer A, Billeter R (2008) Phylogeography of native ploidy levels and invasive tetraploids of Solidago gigantea. Mol Ecol 17:5245–5256

    Article  PubMed  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Shah MA, Callaway RM, Shah T et al (2014) Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. New Phytol 202:1286–1296

    Article  PubMed  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. PNAS 97:7051–7057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then…and now: Stebbins revisited. Am J Bot 101:1057–1078

    Article  PubMed  Google Scholar 

  • Stein K, Rosche C, Hirsch H, Kindermann A, Köhler J, Hensen I (2014) The influence of forest fragmentation on clonal diversity and genetic structure in Heliconia angusta, an endemic understorey herb of the Brazilian Atlantic rain forest. J Trop Ecol 30:199–208

    Article  Google Scholar 

  • Szűcs M, Melbourne BA, Tuff T, Hufbauer RA (2014) The roles of demography and genetics in the early stages of colonization. Proc R Soc Lond B Biol 281:20141073. doi:10.1098/rspb.2014.1073

    Article  Google Scholar 

  • te Beest M, Roux JJL, Richardson DM et al (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Treier UA, Broennimann O, Normand S et al (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377

    Article  PubMed  Google Scholar 

  • Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Change Biol 17:3478–3485

    Article  Google Scholar 

  • Van Puyvelde K, Van Geert A, Triest L (2010) atetra, a new software program to analyse tetraploid microsatellite data: comparison with tetra and tetrasat. Mol Ecol Resour 10:331–334

    Article  Google Scholar 

  • Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc Lond B Biol 278:2–8

    Article  Google Scholar 

  • Zeng X, Michalski SG, Fischer M, Durka W (2011) Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. J Plant Ecol 5:270–278

    Article  Google Scholar 

  • Zorić M, Dodig D, Kobiljski B et al (2012) Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica 140:259–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a graduate stipend of the federal state of Saxony-Anhalt (to C.R.), and a DAAD (German Academic Exchange Service) funded exchange scholarship (Grant Number D|12|00534 to C.R.). We are grateful to B. Müller, M. Laudien, I. Geyer and M. Herrmann for their efforts in the lab, and to A. Diaconou, S. Španiel, B. Banan, R.M. Callaway, J. Maron, A. Schaar, C. Herron-Sweet, V. Mrázová, J. Hoheimer, I. Link, F. Rosche, G. Newcombe and A. Vitale for their help during field work. We thank K. Schrieber, C. S. Brown and two anonymous reviewers for valuable comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rosche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors have given formal consent to the publication of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 778 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosche, C., Durka, W., Hensen, I. et al. The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges. Biol Invasions 18, 1895–1910 (2016). https://doi.org/10.1007/s10530-016-1133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1133-2

Keywords

  • Biological invasion
  • Centaurea stoebe
  • Colonization
  • Genetic diversity
  • Geo-cytotype
  • Polyploidy