Skip to main content

Advertisement

Log in

Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Pinus contorta, one of the most invasive tree species in the world, has been proposed as a model species for improving our understanding of invasion ecology. In this study, we assessed the impact of P. contorta invasions on the species richness, diversity and species traits of a resident treeless steppe community. In a Pinus contorta invasion gradient (Patagonia, Chile), we surveyed vegetation from high canopy closure pine invasion to treeless steppe, and computed species richness, diversity and Sørensen similarity indexes. For all species, we determined functional trait values from the literature, data bases, and personal observations. Species richness and diversity were related to canopy cover (a proxy for invasion intensity) using generalized linear mixed-effects models. Changes in species traits due to canopy cover were analyzed using RLQ ordination analysis and the fourth-corner analysis. We found that Pinus contorta canopy cover significantly reduced the number of native species by 70 %, implying a strong effect on species exclusion. A few native species, however, prevail in the novel conditions (e.g. Baccharis magellanica, Acaena integerrima). Species traits changed significantly with increasing pine canopy cover, where P. contorta promoted the existence of traits related to shade-tolerance and conservative reproductive strategies. We conclude that the negative impacts of Pinus contorta into the treeless steppe, including a reduction in the number of species and the shifting to traits adapted to tolerate shade and associated with conservative reproductive strategies, can have severe implications for the conservation of biodiversity and ecosystem functioning where it invades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306

    Article  PubMed  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Bates D and Maechler M (2009) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-31. http://CRAN.R-project.org/package=lme4

  • Bivand R, Lewin-Koh N, Pebesma E, Archer E, Baddeley A, Bibiko H-J, Brey S, Callahan J, Carrillo G, Dray S, Forrest D, Friendly M, Giraudoux P, Golicher D, Gómez Rubio V, Hausmann P, Hufthammer KO, Jagger T, Luque S, MacQueen D, Niccolai A, Lamigueiro OP, Short T, Snow G, Stabler B, Stokely M, Turner R (2015) Maptools: tools for reading and handling spatial objects. R package version 0.8–10. http://r-forge.r-project.org/projects/maptools/

  • Chabrerie O, Loinard J, Perrin S, Saguez R, Decocq G (2010) Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biol Invasions 12:1891–1907

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chessel D, Dufour A, Thioulouse J (2004) The ade4 package-I: one-table methods. R news 4:5–10

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s Guide and application. http://viceroy.eeb.uconn.edu/estimates/index.html

  • Correa MV (1998) Flora patagónica, Parte I. INTA, Buenos Aires

    Google Scholar 

  • Dolédec S, Chessel D, terBraak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  PubMed  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Dray S, Choler P, Dolédec S, Peres-Neto PR, Thuiller W, Pavoine S, ter Braak CJF (2014) Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95:14–21

    Article  PubMed  Google Scholar 

  • Fajardo A, Gundale MJ (2015) Combined effects of anthropogenic fires and land–use change on soil properties and processes in Patagonia, Chile. For Ecol Manag 357:60–67

    Article  Google Scholar 

  • Fajardo A, McIntire EJB (2010) Merged trees in second-growth, fire origin forests in Patagonia, Chile: positive spatial association patterns and their ecological implications. Am J Bot 97:1424–1430

    Article  PubMed  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (2000) Gap light analyzer (GLA), Version 2.0: image processing software to analyze true-colour, hemispherical canopy photographs. Bull Ecol Soc Am 81:191–197

    Article  Google Scholar 

  • Fuentes N, Pauchard A, Sánchez P, Esquivel J, Marticorena A (2013) A new comprehensive database of alien plant species in Chile based on herbarium records. Biol Invasions 15:847–858

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation on plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159:396–419

    Article  PubMed  Google Scholar 

  • Gundale MJ, Pauchard A, Langdon B, Peltzer DA, Maxwell BD, Nuñez MA (2014) Can model species be used to advance the field of invasion ecology? Biol Invasions 16:591–607

    Article  Google Scholar 

  • Hayward J, Horthon TR, Pauchard A, Nuñez MA (2015) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444

    Article  PubMed  Google Scholar 

  • Hess LJT, Austin AT (2014) Pinus ponderosa alters nitrogen dynamics and diminishes the climate footprint in natural ecosystems of Patagonia. J Ecol 102:610–621

    Article  CAS  Google Scholar 

  • Hooper DU, Dukes JS (2010) Functional composition controls invasion success in a California serpentine grassland. J Ecol 98:764–777

    Article  Google Scholar 

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971

    Article  Google Scholar 

  • Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For Ecol Manag 141:43–57

    Article  Google Scholar 

  • Legendre P, Galzin R, HarmelinVivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562

    Google Scholar 

  • Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B Biol Sci 270:775–781

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Löewe V, Murillo P (2001) Estudio de ensayo de introducción de especies. INFOR, Santiago

    Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago, p 316

    Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Glededen Beach, p 300

    Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH and Wagner H (2013) vegan: community ecology package. R package version 2.0-10, http://CRAN.R-project.org/package=vegan

  • Pauchard A, Escudero A, García RA, de la Cruz M, Langdon B, Cavieres LA, Esquivel J (2016) Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecol Evol 6:447–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Peña E, Hidalgo M, Langdon B, Pauchard A (2008) Patterns of spread of Pinus contorta Dougl. ex Loud. invasion in a natural reserve in southern South America. For Ecol Manag 256:1049–1054

    Article  Google Scholar 

  • Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98:539–548

    Article  PubMed  Google Scholar 

  • R-Development-Core-Team (2013) R: a language and environment for statistical computing. Version, 2.15.3. R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org

  • Rejmánek M, Rosén E (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. J Veg Sci 3:625–630

    Article  Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Rejmanek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

    Article  Google Scholar 

  • Rodríguez R, Marticorena A, Teneb E (2008) Vascular plants of Baker and Pascua Rivers, Region of Aisen, Chile. Gayana Botanica 65:39–70

    Google Scholar 

  • Rundel PW, Dickie IA, Richardson DM (2014) Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions 16:663–675

    Article  Google Scholar 

  • Scheu R, Ahumada M, Cerda J, Silva F and Cruces P (2008) Guias de condición para los pastizales de la ecorregión esteparia fría de Aysén, Proyecto FNDR—SAG XI Región de Aysén: Levantamiento para el ordenamiento de los Ecosistemas de Aysén. Servicio Agrícola y Ganadero (SAG), Región de Aysén. Ministerio de Agricultura, Gobierno de Chile, 94 pp

  • Silva F (2010) Flora Agropecuaria de Aysén, Ministerio de Agricultura de Chile, Servicio Agrícola y Ganadero. Región de Aysén. Primera edición, 520 pp

  • Simberloff D, Nunez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other Southern Hemisphere regions. Aust Ecol 35:489–504

    Article  Google Scholar 

  • Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Peltzer DA, Terwei A, Rew LJ (2016a) Drivers of plant invasion vary globally: evidence from pine invasions within six ecoregions. Glob Ecol Biogeogr 25:96–106

    Article  Google Scholar 

  • Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Rew LJ (2016b) Native versus nonnative invasions: similarities and differences in the biodiversity impacts of Pinus contorta in introduced and native ranges. Div Distrib press. doi:10.1111/ddi.12419

    Google Scholar 

  • Teillier S, Macaya-Berti J, Bonnemaison C, Delaunoy J, Marticorena A (2013) A contribution to the knowledge of the flora of Huilo Huilo biological reserve, Región de Los Ríos, Chile. Gayana Botanica 70:194–234

    Google Scholar 

  • Thuiller W, Gassó N, Pino J, Vilà M (2012) Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol Invasions 14:1963–1980

    Article  Google Scholar 

  • Török P, Miglécz P, Valkó P, Tóth K, Kelemen A, Albert Á-J, Matus G, Molnár V, Ruprecht E, Papp L, Deák B, Horváth O, Takács A, Hüse B, Tóthmérész B (2013) New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Botanica Hungarica 55:429–472

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133:166–181

    Article  Google Scholar 

  • Zuloaga F, Morrone O, Belgrano M, Marticorena C and Marchesi E (2008) Catálogo de las plantas vasculares del cono sur (Argentina, southern Brazil, Chile, Paraguay y Uruguay), Monographs of the Missouri Botanical Garden, 107. vol. 1 Pteridophyta, Gymnospermae y Monocotyledoneae; vol. 2 Dicotyledoneae: A-F; vol. 3 Dicotyledoneae: F-Z, 3348 pp

Download references

Acknowledgments

This study has been financed by the Chilean Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) project 1120171 to AF and PBM. Additional support to PBM and AP came from Grants ICM P05–002 and CONICYT PFB–23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Fajardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo-Monasterio, P., Pauchard, A. & Fajardo, A. Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol Invasions 18, 1883–1894 (2016). https://doi.org/10.1007/s10530-016-1131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1131-4

Keywords

Navigation