Advertisement

Biological Invasions

, Volume 18, Issue 6, pp 1759–1768 | Cite as

Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin

  • Luciano Bosso
  • Mirko Di Febbraro
  • Gennaro Cristinzio
  • Astolfo Zoina
  • Danilo Russo
Original Paper

Abstract

Xylella fastidiosa is a xylem-limited gram-negative bacterium causing a high number of severe diseases to many agricultural and forestry plants. We developed a Maxent model to detect the current and future potential distribution of X. fastidiosa in the Mediterranean under climate change. For future projections, we used Hadley Centre’s HADGEM2-ES models for four representative concentration pathways (2.6, 4.5, 6.0 and 8.5) and two time periods (2050 and 2070). Maxent models achieved excellent levels of predictive performance as can be seen from AUC, TSS and AUCdiff values. The potential distribution obtained for the current time comprises Portugal, Spain, Italy, Corsica, Albania, Montenegro, Greece and Turkey as well as all countries of northern Africa and the Middle East. X. fastidiosa is not predicted to change its distribution in the Basin in response to climate change. Our study, however, highlights that X. fastidiosa may overcome the current boundaries outside Italy. Given the potentially high risk, we urge that the listed countries consider appropriate and preventive phytosanitary measures to avoid the introduction of the bacterium.

Keywords

Biological invasion Emerging pest Maxent Olive quick decline syndrome Species distribution models 

Supplementary material

10530_2016_1118_MOESM1_ESM.pdf (33 kb)
Supplementary material 1 (PDF 33 kb)

References

  1. Aguayo J, Elegbede F, Husson C, Saintonge FX, Marçais B (2014) Modeling climate impact on an emerging disease, the Phytophthora alni— induced alder decline. Global Change Biol 20:3209–3221CrossRefGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  3. Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. JNat Conserv 21:72–80Google Scholar
  4. Bosso L, Di Febbraro M, Cristinzio G, Zoina A, Russo D (2016) Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathol Mediterr. doi: 10.14601/Phytopathol_Mediterr-16429 Google Scholar
  5. Brands S, Herrera S, San-Martin D, Gutierrez JM (2011) Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res 48:145–161CrossRefGoogle Scholar
  6. Brands S, Herrera S, Fernandez J, Gutierrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dynam 41:803–817CrossRefGoogle Scholar
  7. Cariddi C, Saponari M, Boscia D, De Stradis A, Loconsole G, Nigro F, Porcelli F, Potere O, Martelli GP (2014) Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. J Plant Pathol 96:1–5Google Scholar
  8. Di Febbraro M, Roscioni F, Frate L, Carranza ML, De Lisio L, De Rosa D, Marchetti M, Loy A (2015) Long-term effects of traditional and conservation-oriented forest management on the distribution of vertebrates in Mediterranean forests: a hierarchical hybrid modelling approach. Divers Distrib 21:1141–1154CrossRefGoogle Scholar
  9. Domíguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012) Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation. J Nat Conserv 20:247–253CrossRefGoogle Scholar
  10. Ejere VC, Okpara HT (2010) Aspects of the ecology of spittlebugs (Homoptera: Cercopidae) in Nsukka, south east, Nigeria. Anim Res Int 7:1242–1252Google Scholar
  11. Elith J (2002) Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New YorkGoogle Scholar
  12. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Jin L, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Mcc Overton J, Peterson AT, Phillips SJ, Richardson K, Scachetti-pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  13. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  14. Fabre B, Piou D, Desprez-Loustau ML, Marçais A (2011) Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biol 17:3218–3227CrossRefGoogle Scholar
  15. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  16. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509CrossRefPubMedGoogle Scholar
  17. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. EcolModel 135:147–186Google Scholar
  18. Halkka O, Raatikainen M, Vasarainen A, Heinonen A (1967) Ecology and ecological genetics of Philaenus spumarìus (L.) (Homoptera). Ann Zool Fennici 4:1–18Google Scholar
  19. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data. 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  20. Hoddle MS (2004) The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Prot 23:691–699CrossRefGoogle Scholar
  21. Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066CrossRefGoogle Scholar
  22. Janse JD, Obradovic A (2010) Xylella fastidiosa: its biology, diagnosis, control and risks. J Plant Pathol 92:S1.35–S1.48Google Scholar
  23. Lieth JH, Meyer MM, Yeo KH, Kirkpatrick BC (2011) Modeling cold curing of pierce’s disease in Vitis vinifera ‘Pinot Noir’ and ‘Cabernet Sauvignon’ Grapevines in California. Phytopatologia 101:1492–1500CrossRefGoogle Scholar
  24. Loconsole G, Potere O, Boscia D, Altamura G, Djelouah K, Elbeaino T, Frasheri D, Lorusso D, Palmisano F, Pollastro P, Silletti MR, Trisciuzzi N, Valentini F, Savino V, Saponari M (2014) Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J Plant Pathol 96:1–8Google Scholar
  25. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dynam 44:1437–1456CrossRefGoogle Scholar
  26. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The rcp greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241CrossRefGoogle Scholar
  27. Nabat P, Somot S, Mallet M, Chiapello I, Morcrette JJ, Solmon F, Szopa S, Dulac F, Collins W, Ghan S, Horowitz LW, Lamarque JF, Lee YH, Naik V, Nagashima T, Shindell D, Skeie R (2013) A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmos Meas Tech 6:1287–1314CrossRefGoogle Scholar
  28. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  29. Porfirio LL, Harris RMB, Lefroy EC, Hugh S, Gould SF, Lee G, Bindoff NL, Mackey B (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9(11):e113749. doi: 10.1371/journal.pone.0113749 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Purcell AH (1997) Xylella fastidiosa, a regional problem or global threat? J Plant Pathol 79:99–105Google Scholar
  31. Purcell AH (2013) Paradigms: Examples from the bacterium Xylella fastidiosa. Annu Rev Phytopathol 51:229–356CrossRefGoogle Scholar
  32. Rebelo H, Jones G (2010) Ground validation of presence-only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J Appl Ecol 47:410–420CrossRefGoogle Scholar
  33. Rogelj J (2013) Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013: the physical science basis. IPCC working group I contribution to AR5—the physical science basis. IPCC working group I contribution to AR5, Cambridge University Press, Cambridge UK and New York, USA, pp 1029-1136Google Scholar
  34. Rosentrater L (2010) Representing and using scenarios for responding to climate change. Clim Change 1:253–259Google Scholar
  35. Ruosteenoja K, Carter TR, Jylha K, Tuomenvirta H (2003) Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios. The Finnish Environment 644, Finnish Environment Institute Helsinki, p 83Google Scholar
  36. Russo D, Di Febbraro M, Rebelo H, Mucedda M, Cistrone L, Agnelli P, De Pasquale PP, Martinoli A, Scaravelli D, Spilinga C, Bosso L (2014) What story does geographic separation of insular bats tell? A case study on Sardinian rhinolophids. PLoS One 9:e110894. doi: 10.1371/journal.pone.0110894.pmid:25340737 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Russo D, Di Febbraro M, Cistrone L, Jones G, Smeraldo S, Garonna AP, Bosso L (2015) Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. J Zool 297:165–175CrossRefGoogle Scholar
  38. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:668Google Scholar
  39. Saponari M, Loconsole G, Cornara D, Yokomi RK, De Stradis A, Boscia D, Bosco D, Martelli GP, Krugner R, Porcelli F (2014) Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J Econ Entomol 107:1316–1319CrossRefPubMedGoogle Scholar
  40. Shabani F, Kumar L, Esmaeili A (2014) Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agric Ecosyst Environ 197:96–105CrossRefGoogle Scholar
  41. Warren DL, Seifert SN (2011) Environmental niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342CrossRefPubMedGoogle Scholar
  42. Wells JM, Raju BC, Hung HY, Weisburg WG, Mandelco-Paul L, Brenner DJ (1987) Xylella fastidiosa gen. nov., sp. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37:136–143CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPortici, NaplesItaly
  2. 2.EnvixLab, Dipartimento Bioscienze e TerritorioUniversità del MolisePescheItaly
  3. 3.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations