Biological Invasions

, Volume 18, Issue 6, pp 1581–1598 | Cite as

Rapid morphological changes, admixture and invasive success in populations of Ring-necked parakeets (Psittacula krameri) established in Europe

  • Ariane Le Gros
  • Sarah Samadi
  • Dario Zuccon
  • Raphaël Cornette
  • Michael P. Braun
  • Juan Carlos Senar
  • Philippe Clergeau
Original Paper


The Ring-necked parakeet (Psittacula krameri), native of Asia and Africa, is a very successful invasive species in Europe: it has been present there for over 50 years. A recent study showed that European invasive populations occupy a colder climatic niche than in their native range but the establishment of this tropical species in temperate regions remains unexplained. Two main hypotheses may explain the success of Ring-necked parakeet in Europe: admixture between individuals from different origins and/or rapid adaptation to new environmental conditions. In this study, we investigated with molecular data the origin of European populations of Ring-necked parakeets to assess whether these populations result from admixture between individuals from different source populations. We also investigated the morphology of individuals from European populations and from the native range to assess whether the invasive populations have morphologically diverged from their source and could have become adapted to European conditions. We found evidence of admixture in some of the European populations but not all of them. Admixture between individuals from different origins within European populations thus cannot explain alone their invasive success. Conversely, we found that the morphology of the individuals from European populations has diverged from the morphology of native individuals, in a similar direction. Rapid adaptation to European environmental conditions via phenotypic plasticity or natural selection could thus be a factor explaining the invasive success of Ring-necked parakeets in Europe.


Admixture Morphometrics Phylogeography Population genetics Rapid adaptation Ring-necked parakeet 



We thank the LabEx BcDiv which financed our genetic analyses, the Observatoire de la Biodiversité Urbaine (Département Seine-Saint-Denis) and the Conseil Général du Département des Hauts-de-Seine which financed the captures of Ring-necked parakeets, the British Natural History Museum and the Muséum National d’Histoire Naturelle for giving us access to their collection of Ring-necked parakeets, the Muséum National d’Histoire Naturelle, the Naturhistoriska Riksmuseet, and Professor Michael Wink (Institute of Pharmacy and Molecular Biotechnology, Heidelberg University) for the samples they lent us. Finally, we thank the molecular systematic platform (SSM) of the Muséum National d’Histoire Naturelle, its staff, and particularly Josie Lambourdière. This study contributes to the reflections conducted by the European network on invasive parakeets: Parrotnet.

Supplementary material

10530_2016_1103_MOESM1_ESM.pdf (481 kb)
Supplementary material 1 (PDF 482 kb)


  1. Adachi T, Ishikawa A, Mori S et al (2012) Shifts in morphology and diet of non-native sticklebacks introduced into Japanese crater lakes. Ecol Evol 2:1083–1098CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16CrossRefGoogle Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  4. Amiot C, Lorvelec O, Mandon-Dalger I et al (2007) Rapid morphological divergence of introduced Red-whiskered Bulbuls Pycnonotus jocosus in contrasting environments. Ibis 149:482–489CrossRefGoogle Scholar
  5. Baylac M (2012) Rmorph: A “R” geometric multivariate morphometrics library; Institut de Systématique, Evolution et Biodiversité, Muséum National d’Histoire Naturelle, Paris, FranceGoogle Scholar
  6. Boag PT, Grant PR (1981) Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science 214:82–85CrossRefPubMedGoogle Scholar
  7. Braun M (2009) Die Bestandssituation des Halsbandsittichs Psittacula krameri in der Rhein-Neckar-Region (Baden-Württemberg, Rheinland-Pfalz, Hessen), 1962–2008, im Kontext der gesamteuropäischen Verbreitung. Vogelwelt 130:77–89Google Scholar
  8. Butler CJ (2003) Population biology of the introduced Rose-ringed Parakeet Psittacula krameri in the UK. PhD Thesis, University of OxfordGoogle Scholar
  9. Cabezas S, Carrete M, Tella JL et al (2013) Differences in acute stress responses between wild-caught and captive-bred birds: a physiological mechanism contributing to current avian invasions? Biol Invasions 15:521–527CrossRefGoogle Scholar
  10. Carrete M, Tella J (2008) Wild-bird trade and exotic invasions: a new link of conservation concern? Front Ecol Environ 6:207–211CrossRefGoogle Scholar
  11. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  12. CITES (2015) The CITES trade database. Accessed 21 April 2015
  13. Clergeau P, Vergnes A (2011) Bird feeders may sustain feral Rose-ringed parakeets Psittacula krameri in temperate Europe. Wildl Biol 17:248–252CrossRefGoogle Scholar
  14. Conant S (1988) Geographic variation in the Laysan Finch (Telespyza cantans). Evol Ecol 2:270–282CrossRefGoogle Scholar
  15. Curran JM (2006) R Package “Hotelling”. University of Auckland, New ZealandGoogle Scholar
  16. Da Silva AG, Eberhard JR, Wright TF et al (2010) Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol Ecol 19:3336–3350CrossRefGoogle Scholar
  17. Del Hoyo J, Elliott A, Sargatal J (eds) (1997) Handbook of the birds of the world (volume 4) sandgrouse to cuckoos. Lynx Edicions, BarcelonaGoogle Scholar
  18. Desrochers A (2010) Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91:1577–1582CrossRefPubMedGoogle Scholar
  19. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  20. Edelaar P, Roques S, Hobson EA et al (2015) Shared genetic diversity across the global invasive range of the monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 24:2164–2176CrossRefPubMedGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  22. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  23. Facon B, Pointier J-P, Jarne P et al (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367CrossRefPubMedGoogle Scholar
  24. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  25. Forshaw JM (1989) Parrots of the World. Landsdowe, WilloughbyGoogle Scholar
  26. Griffiths R, Double M, Orr K, Dawson R (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefPubMedGoogle Scholar
  27. Groombridge JJ, Jones CG, Nichols RA et al (2004) Molecular phylogeny and morphological change in the Psittacula parakeets. Mol Phylogenet Evol 31:96–108CrossRefPubMedGoogle Scholar
  28. Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces, Hystrix. Ital J Mammal. doi: 10.4404/hystrix-24.1-6292 Google Scholar
  29. Herrel A, Podos J, Huber SK, Hendry AP (2005) Evolution of bite force in Darwin’s finches: a key role for head width. J Evol Biol 18:669–675CrossRefPubMedGoogle Scholar
  30. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  31. Jackson H, Strubbe D, Tollington S et al (2015) Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade. Mol Ecol 24:4269–4285CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  33. Kerr KCR (2011) Searching for evidence of selection in avian DNA barcodes. Mol Ecol Resour 11:1045–1055CrossRefPubMedGoogle Scholar
  34. Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4:434–437CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kooyers NJ, Olsen KM (2012) Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L.). Mol Ecol 21:2455–2468CrossRefPubMedGoogle Scholar
  36. Kristjánsson BK, Skúlason S, Noakes DLG (2002) Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol Ecol Res 4:659–672Google Scholar
  37. Kristjánsson BK, Skúlason S, Noakes DLG (2004) Unusual number of pectoral fin rays in an Icelandic population of threespine stickleback (Gasterosteus aculeatus) recently isolated in freshwater. Evol Ecol 18:379–384CrossRefGoogle Scholar
  38. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 5347:9–11Google Scholar
  39. Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leisler B, Winkler H (1985) Ecomorphology. Curr Ornithol 2:155–186CrossRefGoogle Scholar
  41. Losos JB, Warheit KI, Schoener TW (1997) Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387:70–73CrossRefGoogle Scholar
  42. Morgan DHW (1993) Feral Rose-ringed parakeets in Britain. Br Birds 86:561–564Google Scholar
  43. Mosimann J, James F (1979) New statistical methods for allometry with application to Florida red-winged blackbirds. Evolution 33:444–459CrossRefGoogle Scholar
  44. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  45. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583CrossRefPubMedGoogle Scholar
  46. O’Neill EM, Beard KH, Pfrender ME (2012) Cast adrift on an island: introduced populations experience an altered balance between selection and drift. Biol Lett 8:890–893Google Scholar
  47. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  48. Parr M, Juniper T (2010) A guide of the Parrots of the world. Bloomsbury Publishing, LondonGoogle Scholar
  49. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  50. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803CrossRefPubMedGoogle Scholar
  51. Pithon JA, Dytham C (2001) Determination of the origin of British feral Rose-ringed Parakeets. Br Birds 94:74–79Google Scholar
  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  53. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Raisin C, Dawson DA, Greenwood AG et al (2009) Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves). Mol Ecol Resour 9:1231–1235CrossRefPubMedGoogle Scholar
  55. Reznick D, Shaw F, Rodd F, Shaw R (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937CrossRefPubMedGoogle Scholar
  56. Rohlf FJ (2010a) TPSDIG, version 2.16. SUNY: Department of Ecology and Evolution, Stony BrookGoogle Scholar
  57. Rohlf FJ (2010b) TPSRELW, version 1.49. SUNY: Department of Ecology and Evolution, Stony BrookGoogle Scholar
  58. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40CrossRefGoogle Scholar
  59. Rollins LA, Richardson MF, Shine R (2015) A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol Ecol 24:2264–2276CrossRefPubMedGoogle Scholar
  60. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  61. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  62. Runemark A, Hansson B (2010) Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph. BMC Evol Biol 10:269CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shwartz A, Strubbe D, Butler CJ et al (2009) The effect of enemy-release and climate conditions on invasive birds: a regional test using the rose-ringed parakeet (Psittacula krameri) as a case study. Divers Distrib 15:310–318CrossRefGoogle Scholar
  64. Spurgin LG, Illera JC, Jorgensen TH et al (2014) Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation? Mol Ecol 23:1028–1039CrossRefPubMedGoogle Scholar
  65. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  66. Stockwell CA, Weeks SC (1999) Translocations and rapid evolutionary responses in recently established populations of western mosquitofish (Gambusia affinis). Anim Conserv 2:103–110CrossRefGoogle Scholar
  67. Strubbe D, Matthysen E (2009) Establishment success of invasive ring-necked and monk parakeets in Europe. J Biogeogr 36:2264–2278CrossRefGoogle Scholar
  68. Strubbe D, Jackson H, Groombridge J, Matthysen E (2015) Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range. Divers Distrib 21:675–685CrossRefGoogle Scholar
  69. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  70. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  71. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B Biol Sci 278:2–8CrossRefGoogle Scholar
  72. Yonekura R, Kawamura K, Uchii K (2007) A peculiar relationship between genetic diversity and adaptability in invasive exotic species: bluegill sunfish as a model species. Ecol Res 22:911–919CrossRefGoogle Scholar
  73. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université Paris Diderot, Sorbonne Paris CitéParisFrance
  2. 2.MNHN, CNRS, UPMC, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205)Sorbonne UniversitésParisFrance
  3. 3.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
  4. 4.Evolutionary and Behavioural Ecology Associate Research Unit (CSIC)Natural History Museum of BarcelonaBarcelonaSpain
  5. 5.MNHN, CNRS, UPMC, Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR7204)Sorbonne UniversitésParisFrance

Personalised recommendations