Skip to main content

Advertisement

Log in

Monk parakeet invasion success: a role for nest thermoregulation and bactericidal potential of plant nest material?

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species are a global threat to biodiversity, economy and human wellbeing. To mitigate these threats, identifying and halting the introduction of potentially invasive species is crucial. Although progress has been made in elucidating mechanisms underlying invasion success, the role of species behavioral strategies has only received scant attention. Here, we use the invasion of monk parakeets in Santa Catarina state, southern Brazil to study whether behavioral strategies such as nest thermoregulation and the ability to self-medicate against pathogens contribute to the establishment success of invading species. We relate data on monk parakeet reproductive success to ambient temperatures in- and outside nesting chambers and test the bactericidal potential of plants transported to the nest by breeding monk parakeets. Compared to breeding data from other invaded ranges and parts of the species’ native range, our results suggest both thermoregulation and the use of bactericidal plants could potentially influence monk parakeet reproductive success. Thermoregulation maintains stable temperatures of incubator chambers compared to large fluctuations (especially hotter extremes) outside the nest. At least one of the plants brought to the nest effectively inhibited growth of pathogenic bacteria. The union of these two factors could increase reproductive rates and may consequently aid the expansion of the species in new non-native environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 6:711–728

    Google Scholar 

  • Amorim JF, Piacentini VQ (2006) Novos registros de aves raras em Santa Catarina, Sul do Brasil, incluindo os primeiros registros documentados de algumas espécies para o Estado. Rev Bras Ornitol 14:145–149

    Google Scholar 

  • ANVISA (2011) Formulário de Fitoterápicos da Farmacopéia Brasileira/ANVISA. Brasília, Brazil

  • Aramburú RM (1991) Contribución al estudio biológico de la Cotorra (Myiopsitta monachus) en la provincia de Buenos Aires (Aves: Psittacidae). Thesis, Universidad Nacional de La Plata

  • Avery ML, Yoder CA, Tillman EA (2008) Diazacon inhibits reproduction in invasive monk parakeet populations. J Wildlife Manage 72:1449–1452

    Article  Google Scholar 

  • Balen JH, Cavé AJ (1969) Survival and weight loss of nestling great tits, Parus major, in relation to brood-size and air temperature. Neth J Zool 20:464–474

    Article  Google Scholar 

  • Banbura J, Blondel J, Wilde-Lambrechts H, Perret P (1995) Why do female blue tits (Parus caeruleus) bring fresh plants to their nests? J für Ornithol 136:217–221

    Article  Google Scholar 

  • Bangert RL, Cho BR, Widders PR, Stauber EH, Ward ACS (1988) A survey of aerobic bacteria and fungi in the feces of healthy psittacine birds. Avian Dis 32:46–52

    Article  CAS  PubMed  Google Scholar 

  • BirdLife International & NatureServe (2011) Bird species distribution maps of the world. BirdLife international, Cambridge, UK and NatureServe, Arlington, VA. http://www.birdlife.org/datazone/info/spcdownload. Acessed 7 Dec 2015

  • Blackburn TM, Duncan RP (2009) Determinants of establishment success in introduced birds. Nature 414:195–197

    Article  Google Scholar 

  • Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM (2006) A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. Bioscience 56:661–673

    Article  Google Scholar 

  • Brzek P, Konarzewski M (2007) Relationship between avian growth rate and immune response depends on food availability. J Exp Biol 210:2361–2367

    Article  PubMed  Google Scholar 

  • Bucher EH (1988) Do birds use biological control against nest parasites? Parasitol Today 4:1–3

    Article  CAS  PubMed  Google Scholar 

  • Bucher EH, Aramburú RM (2014) Land-use changes and monk parakeet expansion in the Pampas grasslands of Argentina. J Biogeogr 41:1160–1170

    Article  Google Scholar 

  • Bucher EH, Martín LF, Martella MB, Navarro JL (1990) Social behaviour and population dynamics of the monk parakeet. P Int Ornithol Congress 20:681–689

    Google Scholar 

  • Butler MW, Whitman BA, Dufty JRAM (2009) Nest box temperature and hatching success of the American Kestrels varies with nest box orientation. Wilson J Ornithol 121:778–782

    Article  Google Scholar 

  • Caccamise DF, Weathers WW (1977) Winter nest microclimate of monk parakeets. Wilson Bull 89:128–129

    Google Scholar 

  • Cassey P (2002) Life history and ecology influences establishment success of introduced land birds. Biol J Linn Soc 76:465–480

    Article  Google Scholar 

  • Catry I, Franco AMA, Sutherl WJ (2011) Adapting conservation efforts to face climate change: modifying nest-site provisioning for lesser Kestrels. Biol Conserv 144:1111–1119

    Article  Google Scholar 

  • Clark L, Mason JR (1985) Use of nest material as insecticidal and anti-pathogenic agents by the European starling. Oecologia 77:174–180

    Article  Google Scholar 

  • Coombs AB, Bowman J, Garroway CJ (2010) Thermal properties of tree cavities during winter in a northern hardwood forest. J Wildl Manag 74:1875–1881

    Article  Google Scholar 

  • Cowie RJ, Hinsley SA (1988) Timing of return with green vegetation by nesting blue tits (Parus caeruleus). Ibis 130:553–555

    Article  Google Scholar 

  • Da Silva AG, Eberhard JR, Wright TF, Avery ML, Russello MA (2010) Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol Ecol 19:3336–3350

    Article  Google Scholar 

  • Dijpa CD, Delmée M, Quetin-Leclerc J (2000) Antimicrobial activity of bark extracts of Syzygium jambos (L.) Alston (Myrtaceae). J Ethnopharmacol 71:307–313

    Article  Google Scholar 

  • Domènech J, Carrillo J, Senar JC (2003) Population size of the monk parakeet (Myiopsitta monachus) in Catalonia. Rev Catalana Ornitol 20:1–9

    Google Scholar 

  • Duffy DC (1983) The ecology of tick parasitism on densely nesting Peruvian seabirds. Ecology 64:110–119

    Article  Google Scholar 

  • Eberhard JR (1998) Breeding biology of the monk parakeet. Wilson Bull 110:463–473

    Google Scholar 

  • EPAGRI (2001) Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina. http://ciram.epagri.sc.gov.br/portal/website/. Acessed 23 June 2015

  • Fatsy LM (2008) Ecology of the monk parakeet, Myiopsitta monachus: an investigation of interspecies interaction, time-activity budget, and nest building biology. South Conn State Univ, Thesis

    Google Scholar 

  • Forshaw JM (1989) Parrots of the world. Blandford, London

    Google Scholar 

  • Gwinner H, Berger S (2005) European starlings: nestling condition, parasites and green nest material during the breeding season. J Ornithol 146:365–371

    Article  Google Scholar 

  • Gwinner H, Oltrogge M, Trost L, Nienaber U (2000) Green plants in starling nests: effects on nestlings. Anim Behav 59:301–309

    Article  PubMed  Google Scholar 

  • Hermans K, Devriese LA, De Herdt P, Godard C, Haesebrouck F (2000) Staphylococcus aureus infections in psittacine birds. Avian Pathol 29:411–415

    Article  CAS  PubMed  Google Scholar 

  • Hilton GM, Hansell MH, Ruxton GD, Reid JM, Monaghan P (2004) Using artificial nests to test importance of nesting material and nest shelter for incubation energetics. Auk 121:777–787

    Article  Google Scholar 

  • Hoi-Leitner M, Romero-Pujante M, Hoi H, Pavlova A (2001) Food availability and immune capacity in serin (Serinus serinus) nestlings. Behav Ecol Sociobiol 49:333–339

    Article  Google Scholar 

  • Humphrey-Smith I, Moorehouse DE (1981) Host acquisition by Ornithodoros copensis Neumann (Ixodoidea: Argasidae). Ann parasitol Hum Comp 56:353–357

    Google Scholar 

  • Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica, México

    Google Scholar 

  • Krijgsveld KL, Visser GH, Dann S (2003) Foraging behavior and physiological changes in precocial quail chicks in response to low temperatures. Physiol Behav 79:311–319

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts MM, Dos Santos A (2000) Aromatic herbs in Corsican Blue Tit nests: the ‘Potpourri’ hypothesis. Acta Oecol 21:175–178

    Article  Google Scholar 

  • Leite PF, Klein RM (1990) Geografia do Brasil: Região Sul Vegetação. In: IBGE (ed) Geografia do Brasil. Rio de Janeiro, pp 113–150

  • Lever C (1987) Naturalized birds of the world. Longman Scientific and Technical, London

    Google Scholar 

  • Lloyd JD, Martin TE (2004) Nest-site preference and maternal effects on offspring growth. Behav Ecol 15:816–823

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Oxford

    Google Scholar 

  • Loli, D (2008) Termorregulação colonial e energética individual em abelhas sem ferrão Melipona quadrifasciata Lepeletier em abelhas sem ferrão. Thesis, University of São Paulo

  • Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit (Parus major) and blue tit (Parus caeruleus) nestlings. J Avian Biol 36:510–516

    Article  Google Scholar 

  • Malheiros LCS (2008) Isoleuterol e Isoleuterina: Potenciais marcadores químicos da tintura de Eleutherine plicata Herb (Iridaceae) e atividades microbiológicas e antioxidantes dissertation, University Federal of Pará

  • Martín LF, Bucher EH (1993) Natal dispersal and first breeding age in monk parakeets. Auk 110:930–933

    Article  Google Scholar 

  • Maziarz M, Wesołowski T (2013) Microclimate of tree cavities used by great tits (Parus major) in a primeval forest. Avian Biol Res 6:47–56

    Article  Google Scholar 

  • Mckechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6:253–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo EC, Radünz LL, Melo RCA (2004) Influência do processo de secagem na qualidade de plantas medicinais—Revisão. Eng Agric 12:307–315

    Google Scholar 

  • Mennerat A, Perret P, Caro SP, Heeb P, Lambrechts MM (2008) Aromatic plants in blue tit (Cyanistes caeruleus) nests: no negative effect on blood-sucking Protocalliphora blow fly larvae. J Avian Biol 39:127–132

    Article  Google Scholar 

  • Mennerat A, Mirleau P, Blondel J, Perret P, Lambrechts MM, Heeb P (2009a) Aromatic plants in nests of the blue tit (Cyanistes caeruleus) protect chicks from bacteria. Oecologia 161:849–855

    Article  PubMed  Google Scholar 

  • Mennerat A, Perret P, Bourgault P, Blondel J, Gimenez O, Thomas DW, Heeb P, Lambrechts MM (2009b) Aromatic plants in nests of blue tits: positive effects on nestlings. Anim Behav 77:569–574

    Article  Google Scholar 

  • Mennerat A, Perret P, Lambrechts MM (2009c) Local individual preferences for nest materials in a passerine bird. PLoS ONE 4:5104

    Article  Google Scholar 

  • Merino S (2010) Immunocompetence and parasitism in nestlings from wild populations. Open Ornithol J 3:27–32

    Article  Google Scholar 

  • Merino S, Potti J (1995) Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73:95–103

    Article  Google Scholar 

  • Merino S, Potti J (1996) Weather dependent effects of ectoparasites on their bird host. Ecography 19:107–113

    Article  Google Scholar 

  • Naranjo JP, Guiamet PS , Saravia SGG (2009) Evaluación fitoquímica de extractos naturales de Eucalyptus citriodora y Pinus caribaea con actividad biocida. Bol Latin Plantas Med 8:445–448

    Google Scholar 

  • Navarro JL, Bucher EH (1992) Annual variation in the timing of breeding of the monk parakeet in relation to climatic factors. Wilson Bull 104:413–424

    Google Scholar 

  • Navarro JL, Martella MB, Bucher EH (1992) Breeding season and productivity of monk parakeets in Cordoba, Argentina. Wilson Bull 104:413–424

    Google Scholar 

  • Navarro JL, Bucher EH, Martella MB (1995) Effects of laying date, clutch size, and communal nest size on the reproductive success of monk parakeets. Wilson Bull 107:742–745

    Google Scholar 

  • Paclík M, Weidinger K (2007) Microclimate of tree cavities during winter nights—implications for roost site selection in birds. Int J Biometeorol 51:287–293

    Article  PubMed  Google Scholar 

  • Peris S, Aramburú R (1995) Reproductive phenology and breeding success of the monk parakeet (Myiopsitta monachus monachus) in Argentina. Stud Neotrop Fauna E 30:115–119

    Article  Google Scholar 

  • Petit C, Hossaert-McKey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5:585–589

    Article  Google Scholar 

  • Pires BA, Belo AF, Rabaça JE (2012) Aromatic plants in eurasian blue tit nests: the ‘nest protection hypothesis’ revisited. Wilson J Ornithol 124:162–165

    Article  Google Scholar 

  • Porfírio Z, Melo-Filho GC, Alvino V, Lima MRF, Sant’ana AEG (2009) Atividade antimicrobiana de extratos hidroalcoólicos de Lafoensia pacari A. St.-Hil., Lythraceae, frente a bactérias multirresistentes de origem hospitalar. Rev Bras Farmacogn 3:785–789

    Article  Google Scholar 

  • Pruett-Jones S, Newman JR, Newman CM, Avery ML, Lindsay JR (2007) Population viability analysis of monk parakeets in the United States and examination of alternative management strategies. USDA National Wildlife Research Center—Staff Publications. Paper 678

  • Ribeiro CM, Souza GS, Ribeiro TAC, Vieira ABR, Mendonça CLV, Barbosa WLR, Vieira JMS (2009) Avaliação da atividade antimicrobiana de plantas utilizadas na medicina popular da Amazônia. Infarma 21:45–49

    Google Scholar 

  • Robinson WD, Robinson TR, Robinson SK, Brawn JD (2000) Nesting success of understory forest birds in lowland Panama. J Avian Biol 31:151–164

    Article  Google Scholar 

  • Roitt IM, Brostoff J, Male DK (1996) Immunology. Mosby, London

    Google Scholar 

  • Rossini C, Castillo L, González A (2008) Plant extracts and their components as potential control agents against human head lice. Phytochem Rev 7:51–63

    Article  CAS  Google Scholar 

  • Sandri IG, Zacaria J, Fracaro F, Delamare APL, Echeverrigaray S (2007) Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against foodborne pathogens and spoiling. Food Chem 103:823–828

    Article  CAS  Google Scholar 

  • Sasaki-Crawley A, Curtis R, Birkett M, Powers S, Papadopoulos A, Pickett J, Blackshaw R, Kerry B (2010) Signalling and behaviour of potato cyst nematode in the rhizosphere of the trap crop, Solanum sisymbriifolium. Asp Appl Biol 103:45–52

    Google Scholar 

  • Schwartz A, Strubbe D, Butler CJ, Matthysen E, Kark S (2009) The effect of enemy-release and climate conditions on invasive birds: a regional test using the ring-necked parakeet (Psittacula krameri) as a case study. Divers Distrib 15:310–318

    Article  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Shutler D, Campbell AA (2007) Experimental addition of greenery reduces flea loads in nests of a non-greenery using species, the tree swallow Tachycineta bicolor. J Avian Biol 38:7–12

    Article  Google Scholar 

  • Sick H (1997) Ornitologia brasileira. Nova Fronteira, Rio de Janeiro

    Google Scholar 

  • Sick H (2001) Ornitologia brasileira: uma introdução. Nova Fronteira, Brasília

    Google Scholar 

  • Silveira FZ, Pich CT, Angioletto E, Bernardin AM (2011) Ecotoxicological analysis of glasses obtained from industrial residues using E. coli and S. aureus as bioindicators Mater. Sci Eng 31:276–280

    Article  Google Scholar 

  • Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583

    Article  CAS  PubMed  Google Scholar 

  • Soler JJ, Avilés JM, Soler M, Møller AP (2003) Evolution of host egg mimicry in a brood parasite, the great spotted cuckoo. Biol J Linn Soc 79:551–563

    Article  Google Scholar 

  • Steinegger E, Hansel R (1988) Lehrbuch der Pharmakognosie und Phytopharmazie. Springer, Berlin

    Book  Google Scholar 

  • Strubbe D, Matthysen E (2009) Establishment success of invasive ring-necked and monk parakeets in Europe. J Biogeogr 36:2264–2278

    Article  Google Scholar 

  • Strubbe D, Matthysen E, Graham CH (2010) Assessing the potential impact of invasive ring-necked parakeets Psittacula krameri on native nuthatches Sitta europeae in Belgium. J Appl Ecol 47:549–557

    Article  Google Scholar 

  • Tomás G, Merino S, Martínez-de la Puente J, Moreno J, Morales J, Lobato E, Rivero-de Aguilar J, del Cerro S (2012) Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behav Process 90:246–253

    Article  Google Scholar 

  • Tschirren B, Richner H (2006) Parasites shape the optimal investment in immunity. Proc R Soc 273:1773–1777

    Article  Google Scholar 

  • Van Bael S, Pruett-Jones S (1996) Exponential population growth of monk parakeets in the United States. Wilson Bull 108:584–588

    Google Scholar 

  • Veiga JP, Polo V, Vinuela J (2006) Nest green plants as a male status signal and courtship display in the spotless starling. Ethology 112:196–204

    Article  Google Scholar 

  • Wiebe KL (2001) Microclimate of tree cavity nests: is it important for reproductive success in Northern flickers? Auk 118:412–421

    Article  Google Scholar 

  • Wimberger PH (1984) The use of green plant material in bird nests to avoid ectoparasites. Auk 10:615–618

    Google Scholar 

Download references

Acknowledgments

We thank Jayme Augusto Prevedello for comments and providing language help on a previous version of this manuscript. We also thank Graziele Milioli to assistance in bactericidal test. I. R. Viana was supported with scholarships from Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina and Coordenação de Aperfeiçoamento Pessoal de Nível Superior. The authors would like to acknowledge the support provided by the European Cooperation in Science and Technology COST Action ParrotNet (ES1304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Réus Viana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, I.R., Strubbe, D. & Zocche, J.J. Monk parakeet invasion success: a role for nest thermoregulation and bactericidal potential of plant nest material?. Biol Invasions 18, 1305–1315 (2016). https://doi.org/10.1007/s10530-016-1068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1068-7

Keywords

Navigation