Biological Invasions

, Volume 18, Issue 3, pp 603–618 | Cite as

Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica

  • Marco A. Molina-Montenegro
  • Carolina Galleguillos
  • Rómulo Oses
  • Ian S. Acuña-Rodríguez
  • Paris Lavín
  • Jorge Gallardo-Cerda
  • Cristian Torres-Díaz
  • Beatriz Diez
  • Gonzalo E. Pizarro
  • Cristian Atala
Original Paper


Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state of xanthophylls cycle), and fitness-related traits (maximum quantum yield, photosynthetic rate and total biomass) in the invasive species Poa annua and Deschampsia antarctica under current conditions of water availability and those projected by climate change models. In addition, two manipulative experiments in controlled and field conditions were conducted to evaluate the competitive ability and survival of both species under current and climate change conditions. Moreover, we performed an experiment with different water availabilities to assess cell damage as a potential mechanism involved in the competitive ability deployed in both species. Finally, was assessed the plasticity and biomass of both species subject to factorial abiotic scenarios (water × temperature, and water × nutrients) ranging from current to climate change condition. Overall, results showed that P. annua had greater phenotypic plasticity in photoprotective strategies, higher performance, and greater competitive ability and survival than D. antarctica under current and climate change conditions. Also, cell damage, assessed by lipid peroxidation, was significantly greater in D. antarctica when grown in presence of P. annua compared when grown alone. Finally, P. annua showed a greater plasticity and biomass than D. antarctica under the factorial abiotic scenarios, being more evident under a climate change scenario (i.e., higher soil moisture). Our study suggests that the high adaptive plasticity and competitive ability deployed by P. annua under current and climate change conditions allows it to cope with harsh abiotic conditions and could help explain its successful invasion in the Antarctica.


Alien species Climate change Deschampsia antarctica Ecophysiological traits Poa annua Survival 



We are grateful to Fernando Carrasco-Urra for their assistance in the field and logistic support from Antarctic station “Arctowski”. Also we acknowledge the financial and logistic support of the Chilean Antarctic Institute (INACH Project T-14-08 and G_22_11).


  1. Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486CrossRefPubMedGoogle Scholar
  2. Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–169Google Scholar
  3. Bokhorst S, Huiskes A, Convey P, Sinclair BJ, Lebouvier M, Van de Vijver B, Wall DH (2011) Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol 34:1421–1435CrossRefGoogle Scholar
  4. Chown SL, Huiskes AHL, Gremmen NJM, Lee JE, Terauds A, Crosbie K et al (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Nat Acad Sci USA 109:4938–4943PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chwedorzewska KJ (2008) Poa annua L. in Antarctic: searching for the resource of introduction. Polar Biol 31:263–268CrossRefGoogle Scholar
  6. Chwedorzewska KJ (2009) Terrestrial Antarctic ecosystems in the changing world: an overview. Pol Polar Res 30:263–276CrossRefGoogle Scholar
  7. Chwedorzewska KJ, Gielwanowska I, Szczuka E, Bochenek A (2008) High anatomical and low genetic diversity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Pol Polar Res 29:377–386Google Scholar
  8. Chwedorzewska KJ, Giełwanowska I, Olech M, Molina-Montenegro MA, Wódkiewicz M, Galera H (2015) Poa annua L. in the maritime Antarctic—an overview. Polar Rec 51:637–643CrossRefGoogle Scholar
  9. Convey P (2008) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica Special Publication, Christchurch, pp 97–130Google Scholar
  10. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431CrossRefPubMedGoogle Scholar
  11. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534CrossRefGoogle Scholar
  12. Durand LZ, Goldstein G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345–354CrossRefGoogle Scholar
  13. Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48:43–49CrossRefGoogle Scholar
  14. Ellis-Evans JC, Walton D (1990) The process of colonization in Antarctic terrestrial and freshwater ecosystems. Polar Biol 3:151–163Google Scholar
  15. Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henckle M, Martínez-Cañellas S et al (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82CrossRefPubMedGoogle Scholar
  16. Fox GA (1993) Failure time analysis: emergence, flowering, survivorship, and other waiting times. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University, Oxford, pp 253–289Google Scholar
  17. Fox AJ, Cooper PR (1998) Climate-change indicators from archival aerial photography of the Antarctic Peninsula. Ann Glaciol 27:636–642Google Scholar
  18. Frenot Y, Gloaguen JC, Trehen P (1997) Climate change in Kergulen Islands and colonization of recently deglaciated areas by Poa kergulensis and P. annua. In: Battaglia B (ed) Antarctic communities: species structure and survival. Cambridge University Press, Cambridge, pp 358–366Google Scholar
  19. Frenot Y, Aubry M, Misset MT, Gloaguen JC, Gourret JP, Lebouvier M (1999) Phenotypic plasticity and genetic diversity in Poa annua L. (Poaceae) at Crozet and Kerguelen Islands (subantarctic). Polar Biol 22:302–310CrossRefGoogle Scholar
  20. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M et al (2005) Biological Invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72CrossRefPubMedGoogle Scholar
  21. García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct Plant Biol 34:759–773CrossRefGoogle Scholar
  22. Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct Ecol 25:1248–1253CrossRefGoogle Scholar
  23. Grace JB (1995) On the measurement of plant competition intensity. Ecology 76:305–308CrossRefGoogle Scholar
  24. Heres AM, Martínez-Vilalta J, Claramunt B (2012) Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestris L.) sites in NE Iberian Peninsula. Trees 26:621–630CrossRefGoogle Scholar
  25. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611CrossRefGoogle Scholar
  26. Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055CrossRefGoogle Scholar
  27. Huiskes AHL, Gremmen NJM, Bergstrom DM, Frenot Y, Hughes KA, Imura S et al (2014) Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol Conserv 171:278–284CrossRefGoogle Scholar
  28. Hulme PE (2008) Phenotypic plasticity and plant invasions: is it all Jack? Funct Ecol 22:3–7CrossRefGoogle Scholar
  29. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  30. Intergovernmental Panel on Climate Change (IPCC) (2013) The physical science basis.
  31. Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Ann Rev Ecol Syst 26:683–704CrossRefGoogle Scholar
  32. Komárkowá V, Poncet S, Poncet J (1985) Two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arct Alp Res 17:401–416CrossRefGoogle Scholar
  33. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, HeidelbergCrossRefGoogle Scholar
  34. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  35. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  36. McDowell SCL (2002) Photosynthetic characteristics of invasive and non-invasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438CrossRefPubMedGoogle Scholar
  37. Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–466CrossRefPubMedGoogle Scholar
  38. Molina-Montenegro MA, Cavieres LA (2010) Variación altitudinal de los atributos morfo-fisiológicos en dos especies de plantas alto-andinas y sus implicancias contra la fotoinhibición. Gayana Bot 67:1–11CrossRefGoogle Scholar
  39. Molina-Montenegro MA, Naya DE (2012) Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS One 7:e47620PubMedCentralCrossRefPubMedGoogle Scholar
  40. Molina-Montenegro MA, Cleland EE, Watts SM, Broitman BR (2012a) Can a breakdown in competition-colonization tradeoff help explain the success of exotic species in the California flora? Oikos 121:389–395CrossRefGoogle Scholar
  41. Molina-Montenegro MA, Torres-Díaz C, Carrasco-Urra F, González-Silvestre L, Gianoli E (2012b) Plasticidad fenotípica en dos poblaciones antárticas de Colobanthus quitensis (caryophyllaceae) bajo un escenario simulado de cambio global. Gayana Bot 69:152–160CrossRefGoogle Scholar
  42. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012c) Occurrence of the non-native annual Bluegrass on the Antarctic mainland and its negative effects on the native plants. Conserv Biol 26:717–723CrossRefPubMedGoogle Scholar
  43. Molina-Montenegro MA, Peñuelas J, Munné-Bosh S, Sardans J (2012d) Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol Invasions 14:21–33CrossRefGoogle Scholar
  44. Molina-Montenegro MA, Palma-Rojas C, Alcayaga-Olivares Y, Oses R, Corcuera LJ, Cavieres LA, Gianoli E (2013a) Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography 36:718–730CrossRefGoogle Scholar
  45. Molina-Montenegro MA, Ricote-Martínez N, Muñoz-Ramírez C, Torres-Díaz C, Gómez-González S, Gianoli E (2013b) Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. J Veg Sci 24:463–472CrossRefGoogle Scholar
  46. Molina-Montenegro MA, Carrasco-Urra F, Acuña-Rodríguez IS, Oses R, Torres-Díaz C, Chwedorzewska KJ (2014) Assessing the importance of human activities for the establishment of the invasive Poa annua in the Antarctica. Polar Res 33:21425CrossRefGoogle Scholar
  47. Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1073–1980CrossRefGoogle Scholar
  48. Mozdzer TH, Megonigal JP (2012) Jack-and-Master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS One 7:e42794PubMedCentralCrossRefPubMedGoogle Scholar
  49. Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery and biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931CrossRefPubMedGoogle Scholar
  50. Muth NZ, Pigliucci M (2007) Implementation of a novel framework for assessing species plasticity in biological invasions: responses of Centaurea and Crepis to Phosphorus and water availability. J Ecol 95:1001–1013CrossRefGoogle Scholar
  51. Nobel PS (2005) Physicochemical and environmental plant physiology. Academic Press, New YorkGoogle Scholar
  52. Ogaya R, Peñuelas J, Asensio D, Llusià J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot 73:89–93CrossRefGoogle Scholar
  53. Olech M, Chwedorzewska KJ (2011) The first appearance and establishment of alien vascular plant in natural habitats on the forefield of retreating glacier in Antarctica. Antarct Sci 23:153–154CrossRefGoogle Scholar
  54. Palacio-López K, Gianoli E (2011) Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos 120:1393–1401CrossRefGoogle Scholar
  55. Pertierra LR, Lara F, Benayas F, Hughes KA (2013) Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol 36:1473–1481CrossRefGoogle Scholar
  56. Pichancourt JB, van Klinken RD (2012) Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant. PLoS One 7:e32323PubMedCentralCrossRefPubMedGoogle Scholar
  57. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367CrossRefPubMedGoogle Scholar
  58. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882CrossRefPubMedGoogle Scholar
  59. Pintó-Marijuan M, Munné-Bosch S (2013) Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends Plant Sci 18:660–666CrossRefPubMedGoogle Scholar
  60. Potvin C, Tardif S (1988) Sources of variability and experimental designs in growth chambers. Funct Ecol 2:122–130CrossRefGoogle Scholar
  61. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, ecological studies. Springer, Berlin, pp 97–126Google Scholar
  62. Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species a new synthesis. Island Press, Washington, pp 104–116Google Scholar
  63. Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993CrossRefPubMedGoogle Scholar
  64. Robinson SA, Wasley J, Tobin AK (2003) Living on the edge—plants and global change in continental and maritime Antarctica. Glob Change Biol 9:1681–1717CrossRefGoogle Scholar
  65. Roe JH (1934) A colorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22Google Scholar
  66. Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652–1660CrossRefGoogle Scholar
  67. Smith RIL (1996) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146CrossRefGoogle Scholar
  68. Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 234–239Google Scholar
  69. Sultan SE (2001) Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology 82:328–343CrossRefGoogle Scholar
  70. Tian XR, Lei YB (2007) Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Russ J Plant Physiol 54:676–682CrossRefGoogle Scholar
  71. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  72. van Kleunen M, Weber E, Fisher M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245CrossRefPubMedGoogle Scholar
  73. Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238CrossRefGoogle Scholar
  74. Wasley JS, Robinson A, Lovelock CE, Popp M (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob Change Biol 12:1800–1812CrossRefGoogle Scholar
  75. Wurzburger N, Ford-Miniat C (2014) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126CrossRefPubMedGoogle Scholar
  76. Zamora P, Rasmussen S, Pardo A, Prieto H, Zúñiga GE (2010) Antioxidant responses of in vitro shoots of Deschampsia antarctica to polyethylene glycol treatment. Antarct Sci 22:163–169CrossRefGoogle Scholar
  77. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  78. Zúñiga-Feest A, Bascuñán-Godoy L, Reyes-Diaz M, Bravo LA, Corcuera LJ (2009) Is survival after ice encasement related with sugar distribution in organs of the antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biol 32:583–591CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marco A. Molina-Montenegro
    • 1
    • 2
  • Carolina Galleguillos
    • 1
  • Rómulo Oses
    • 2
  • Ian S. Acuña-Rodríguez
    • 2
  • Paris Lavín
    • 3
  • Jorge Gallardo-Cerda
    • 3
  • Cristian Torres-Díaz
    • 4
  • Beatriz Diez
    • 5
  • Gonzalo E. Pizarro
    • 6
  • Cristian Atala
    • 7
  1. 1.Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Facultad de Ciencias del Mar, Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad Católica del NorteCoquimboChile
  3. 3.Departamento CientíficoInstituto Antártico Chileno (INACH)Punta ArenasChile
  4. 4.Departamento de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-BíoChillánChile
  5. 5.Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  6. 6.Departamento de Ingeniería Hidráulica y AmbientalPontificia Universidad Católica de ChileSantiagoChile
  7. 7.Laboratorio de Anatomía y Ecología Funcional de Plantas, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaisoChile

Personalised recommendations