Biological Invasions

, Volume 18, Issue 2, pp 583–595 | Cite as

An overlooked invader? Ecological niche, invasion success and range dynamics of the Alexandrine parakeet in the invaded range

  • Leonardo Ancillotto
  • Diederik Strubbe
  • Mattia Menchetti
  • Emiliano Mori
Original Paper


Parrots and parakeets (Aves, Psittaciformes) are prominent among avian invaders, as more than 16 % of living species are currently breeding with at least one population outside their native range. Most studies have been carried out on ring-necked and monk parakeets, as they are the most successful invasive parrots globally. Recently, however, reports of invasive Alexandrine parakeet Psittacula eupatria have increased. Here, we summarize the current knowledge on the current occurrence of Alexandrine parakeets outside the natural range and assess the degree of niche conservatism during the invasion process. Our results show that Alexandrine parakeets have established invasive populations predominantly in Europe, parts of the Middle east and Far Eastern countries such as Japan and Singapore. During the ongoing invasion of Europe, the Alexandrine parakeet considerably expanded its niche into colder climates with respect to those occupied in the native range. Our results offer some support to the hypothesis that interspecific facilitation with previously established ring-necked parakeets Psittacula krameri may contribute to niche expansion and invasion success of congeneric Alexandrine parakeets. Species Distribution Models including both native and invaded range occurrence data predict a high invasion risk across multiple parts of the globe where the species is currently not yet present, thus indicating a high potential for the species for further invasion success and range expansion.


Interspecific facilitation Niche conservatism Psittaciformes Psittacula eupatria Range expansion 



We would like to thank (in alphabetical order) Yassin Darvish, Detlev Franz, Fahroud Kassal, Panagiotys Kouvropalos, Josè Postigo and Assaf Shwartz, for their help in data gathering. Luis Reìno kindly provided us with the data on the trade of P. eupatria in Europe (CITES). We acknowledge the support provided by European Cooperation in Science and Technology COST Action ES1304 (ParrotNet) for the realisation of this paper. The contents of this paper are the authors’ responsibility and neither COST nor any person acting on its behalf is responsible for the use that might be made of the information contained in it.

Supplementary material

10530_2015_1032_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)


  1. Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545CrossRefGoogle Scholar
  2. Akmentins MS, Cardozo DE (2010) American bullfrog Lithobates catesbeianus (Shaw, 1802) invasion in Argentina. Biol Invasions 12:735–737CrossRefGoogle Scholar
  3. Angelici FM, Fiorillo A (2015) Repeated sightings of Alexandrine parakeet (Psittacula eupatria) in Rome (Central Italy) and its likely acclimatization. Riv Ital Ornit (in press) Google Scholar
  4. Araujo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539CrossRefPubMedGoogle Scholar
  5. Araújo MB, Thuiller W, Yoccoz NG (2009) Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc Nat Acad Sci 106:E45–E46CrossRefPubMedCentralPubMedGoogle Scholar
  6. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819CrossRefGoogle Scholar
  7. Bauer HG, Woog F (2008) Nichtheimische Vogelarten (Neozoen) in Deutschland,b Teil I: Auftreten, Bestände und Status. Vogelwarte 46:157–194Google Scholar
  8. Beaumont LJ, Gallagher RV, Leishman MR, Hughes L, Downey PO (2014) How can knowledge of the climate niche inform the weed risk assessment process? A case study of Chrysanthemoides monilifera in Australia. Div Distrib 20:613–625CrossRefGoogle Scholar
  9. BirdLife International (2015) Species factsheet: Psittacula eupatria. Downloaded from on 18th March 2015
  10. Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions. The ecology and evolution of exotic birds. Oxford University Press, OxfordCrossRefGoogle Scholar
  11. Blackburn T, Dyer E, Su S, Cassey P (2015) Long after the event, or four things we (should) know about bird invasions. J Ornithol. doi: 10.1007/s10336-015-1155-z Google Scholar
  12. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300Google Scholar
  13. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589CrossRefPubMedCentralPubMedGoogle Scholar
  14. Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497CrossRefGoogle Scholar
  15. Butler C (2002) Breeding parrots in Britain. Brit Birds 95:345–348Google Scholar
  16. Capiñha C, Rödder D, Pereirs HM, Kappes H (2014) Response of non-native European terrestrial gastropods to novel climates correlates with biogeographical and biological traits. Glob Ecol Biogeogr 23:857–866CrossRefGoogle Scholar
  17. Cassey P, Blackburn TM, Russel GJ, Jones KE, Lockwood JL (2004) Influences on the transport and establishment of exotic bird species: an analysis of the parrots (Psittaciformes) of the world. Glob Change Biol 10:417–426CrossRefGoogle Scholar
  18. Claes D, Matthysen E (2005) Inleidende studie naar de voedselecologie en de mogelijke schadeproblematiek van de Halsbandparkiet Psittacula krameri in Vlaanderen en Brussel. Oriolus 70:145–151Google Scholar
  19. Costantini D, Racheli L, Cavallo D, Dell’Omo G (2008) Genome size variation in parrots: longevity and flying ability. J Avian Biol 39:453–459Google Scholar
  20. Drews C (2001) Wild animals and other pets kept in Costa Rican household: incidence, species and numbers. Soc Anim 9:107–126CrossRefGoogle Scholar
  21. Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98CrossRefGoogle Scholar
  22. Early R, Sax DF (2014) Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23:1356–1365CrossRefGoogle Scholar
  23. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  24. Galbraith JA, Beggs JR, Jones DN, Stanley MC (2015) Supplementary feeding restructures urban bird communities. Proc Natl Acad Sci 112:E2648–E2657CrossRefPubMedCentralPubMedGoogle Scholar
  25. Genovesi P, Shine C (2004) European strategy on invasive alien species. Nature and environment, vol 137. Council of Europe Publishing, StrasbourgGoogle Scholar
  26. Genovesi P, Bacher S, Kobelt M, Pascal M, Scalera R (2009) Alien mammals of Europe. In: Genovesi P, Bacher S, Kobelt M, Pascal M, Scalera R (eds) Handbook of alien species in Europe. Springer, Amsterdam, pp 119–128CrossRefGoogle Scholar
  27. Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11:929–936CrossRefPubMedGoogle Scholar
  28. Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269CrossRefPubMedGoogle Scholar
  29. Hernández-Brito D, Carrete M, Popa-Lisseanu AG, Ibáñez C, Tella JL (2014) Crowding in the city: losing and winning competitors of an invasive bird. PLoS One 9:e100593CrossRefPubMedCentralPubMedGoogle Scholar
  30. Hijmans R, Cameron S, Parra J, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  31. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152CrossRefGoogle Scholar
  32. Holt PI (2006) First record of wire-tailed swallow Hirundo smithii for China, with notes on the Alexandrine Parakeet Psittacula eupatria and Rose-ringed Parakeet Psittacula krameri. Forktail 22:137–138Google Scholar
  33. Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5:89–101CrossRefPubMedCentralPubMedGoogle Scholar
  34. Jennings M (2004) Exotics breeding in Arabian Cities. Phoenix 20:2–5Google Scholar
  35. Jennings M (2010) Alexandrine Parakeet. In: Jennings M (eds) Atlas of the breeding birds of Arabia. Fauna of Arabia, vol 25. King Abdulaziz City for Science and Technology Edn., Riyadh, Kingdom of Saudi Arabia, Saudi Wildlife Commission, Riyadh, Saudi Arabia, pp 397–398Google Scholar
  36. Juniper T, Parr M (1998) Parrots: a guide to parrots of the world. Yale University Press, New Haven, CTGoogle Scholar
  37. Kawakami K, Kanouchi T (2012) The handbook of introduced birds in Japan. Bun-ichi Sogo Shuppan, TokyoGoogle Scholar
  38. Khalegizadeh A (2004) On the diet and population of the Alexandrine parakeet, Psittacula eupatria, in the urban environment of Tehran, Iran. Zool Middle East 32:27–32CrossRefGoogle Scholar
  39. Khan HA (2002) Breeding habits of the rose-ringed parakeet (Psittacula krameri) in the cultivations of Central Punjab. Int J Agric Biol 4:401–403Google Scholar
  40. Khan HA, Beg MA, Khan AA (2004) Breeding habits of the Rose-ringed Parakeet Psittacula krameri in the cultivations of central Punjab. Pak J Zool 36:133–138Google Scholar
  41. Khera N, Mehta V, Sabata BC (2009) Interrelationship of birds and habitat features in urban greenspaces in Delhi, India. Urban For Urban Green 3:187–196CrossRefGoogle Scholar
  42. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  43. Krause T (2004) F1-und F2-Hybriden zwischen Alexandersittich Psittacula eupatria und Halsbandsittich P. krameri im Volksgarten in Dusseldorf. Charadrius 40:7–12Google Scholar
  44. Kumschick S, Nentwig W (2010) Some alien birds have as severe an impact as the most effective alien mammals in Europe. Biol Conserv 143:2757–2762CrossRefGoogle Scholar
  45. Lever C (2005) Naturalised birds of the world. T and A D Poyser, LondonGoogle Scholar
  46. Li Y, Liu X, Li X, Petitpierre B, Guisan A (2014) Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Glob Ecol Biogeogr 23:1094–1104CrossRefGoogle Scholar
  47. Mason G, Burn CC, Dallaire JA, Kroshko J, Kinkaid HM, Jeschke JM (2013) Plastic animals in cages: behavioural flexibility and responses to captivity. Anim Behav 85:1113–1126CrossRefGoogle Scholar
  48. McIntire EJB, Fajardo A (2014) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201:403–416CrossRefPubMedGoogle Scholar
  49. Menchetti M, Mori E (2014) Worldwide impact of alien parrots (Aves Psittaciformes) on native biodiversity and environment. Ethol Ecol Evol 26:172–194CrossRefGoogle Scholar
  50. Menchetti M, Scalera R, Mori E (2014) First record of a possibly overlooked impact by alien parrots on a bat (Nyctalus leisleri). Hystrix Ital J Mammal 25:61–62Google Scholar
  51. Mori E, Di Febbraro M, Foresta M, Melis P, Romanazzi E, Notari A, Boggiano F (2013) Assessment of the current distribution of free-living parrots and parakeets (Aves: Psittaciformes) in Italy: a synthesis of published data and new records. Ital J Zool 80:158–167CrossRefGoogle Scholar
  52. Mori E, Monaco A, Sposimo P, Genovesi P (2014) Low establishment success of alien non-passerine birds in a Central Italy wetland. Ital J Zool 81:593–598CrossRefGoogle Scholar
  53. Nori J, Urbina-Cardona JN, Loyola RD, Lescano JN, Leynaud GC (2011) Climate change and American Bullfrog invasion: what could we expect in South America? PLoS One 6:e25718CrossRefPubMedCentralPubMedGoogle Scholar
  54. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the World: a new map of life on Earth. BioScience 51:933–938Google Scholar
  55. Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10:102–107CrossRefGoogle Scholar
  56. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72CrossRefGoogle Scholar
  57. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348CrossRefPubMedGoogle Scholar
  58. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  59. Ratcliffe JM, Fenton MB, Shettleworth SJ (2006) Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav Evol 67:165CrossRefPubMedGoogle Scholar
  60. Roy HE, Adriaens T, Aldridge DC, Bacher S, Bishop JDD, Blackburn TM, Branquart E, Brodie J, Carboneras C, Cook EJ, Copp GH, Dean HJ, Eilenberg J, Essl F, Gallardo B, Garcia M, García-Berthou E, Genovesi P, Hulme PE, Kenis M, Kerckhof F, Kettunen M, Minchin D, Nentwig W, Nieto A, Pergl J, Pescott O, Peyton J, Preda C, Rabitsch W, Roques A, Rorke S, Scalera R, Schindler S, Schönrogge K, Sewell J, Solarz W, Stewart A, Tricarico E, Vanderhoeven S, van der Velde G, Vilà M, Wood CA, Zenetos A (2015) Invasive alien species—prioritising prevention efforts through horizon scanning ENV.B.2/ETU/2014/0016. European Commission, BrusselsGoogle Scholar
  61. Sanderson E, Jaiterh M, Levy M, Redford K, Wannebo A, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904CrossRefGoogle Scholar
  62. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919CrossRefPubMedGoogle Scholar
  63. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:1–32CrossRefGoogle Scholar
  64. Strubbe D, Matthysen E (2009) Establishment success of invasive ring-necked and monk parakeets in Europe. J Biogeogr 36:2264–2278CrossRefGoogle Scholar
  65. Strubbe D, Matthysen E (2013) Patterns of niche conservatism among non-native birds in Europe are dependent on introduction history and selection of variables. Biol Inv 16:759–764CrossRefGoogle Scholar
  66. Strubbe D, Beauchard O, Matthysen E (2015) Niche conservatism among non-native vertebrates in Europe and North America. Ecography 38:321–329CrossRefGoogle Scholar
  67. Thuiller W, Münkemüller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecol Lett 16:94–105CrossRefGoogle Scholar
  68. Van Der Wal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594CrossRefGoogle Scholar
  69. Van Kleunen A, Van den Bremer L, Lensink R, Wiersma P (2010) De Halsbandparkiet, Monniksparkiet en Grote Alexanderparkiet in Nederland: risicoanalyse en beheer. SOVON-onderzoeksrapport 2010/10 Dit rapport is samengesteld in opdracht van Team Invasieve Exoten van het Ministerie van Landbouw, Natuur en VoedselkwaliteitGoogle Scholar
  70. Ward P, Zahavi A (1973) The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115:517–534CrossRefGoogle Scholar
  71. Weiserbs A (2009) Espèces invasives: le cas des Psittacidés en Belgique. Incidences, évaluation des risques et éventail de mesures. Aves 46:49–56Google Scholar
  72. Weiserbs A, Jacob JP (2007) Oiseaux nicheurs de Bruxelles, 2000–2004: répartition, effectifs, évolution. Aves, Liège, pp 1–292Google Scholar
  73. Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw S, Varia S, Lamontagne-Godwin J, Thomas SE, Murphy ST (2010) The economic cost of invasive non-native species to the British economy. CABI, WallingfordGoogle Scholar
  74. Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9:8CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonardo Ancillotto
    • 1
  • Diederik Strubbe
    • 2
    • 3
  • Mattia Menchetti
    • 4
  • Emiliano Mori
    • 5
  1. 1.Wildlife Research Unit, Laboratorio di Ecologia Applicata, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
  2. 2.Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
  3. 3.Terrestrial Ecology UnitGhent UniversityGhentBelgium
  4. 4.Dipartimento di BiologiaUniversità di FirenzeSesto FiorentinoItaly
  5. 5.Dipartimento di Scienze Agrarie, Forestali ed AlimentariUniversità di TorinoGrugliascoItaly

Personalised recommendations