Advertisement

Biological Invasions

, Volume 18, Issue 2, pp 565–581 | Cite as

Signatures of genetic bottleneck and differentiation after the introduction of an exotic parasitoid for classical biological control

  • F. Zepeda-Paulo
  • E. Dion
  • B. Lavandero
  • F. Mahéo
  • Y. Outreman
  • J. C. Simon
  • C. C. Figueroa
Original Paper

Abstract

As biological invasions, intentional introductions often result in a loss of genetic diversity in the new founder populations. In classical biological control programs, natural enemies introduced into novel environments are likely to suffer from population bottlenecks. Unlike invasive populations, individuals for biological control are typically kept in quarantine during several generations before being released in the field. This procedure reduces further the effective population size of the introduced populations, which thus increases the effects of inbreeding and genetic drift, resulting in a greater loss of genetic diversity. This study addresses the genetic consequences of the introduction of the parasitoid wasp Aphidius ervi, a successful biocontrol agent of important aphid target-pests in Chile. This was assessed by examining the genetic diversity and differentiation at nuclear and mitochondrial genetic markers in terms of (1) the magnitude of the genetic diversity loss after 38 years of the introduction of A. ervi, (2) the current level of genetic differentiation between Chilean introduced populations and putative native populations from France, and (3) the genetic relationships and magnitude of the genetic diversity loss between introduced populations of A. ervi in Chile compared to those introduced in North America. The results provide evidence that parasitoid populations suffered the effects of a moderate genetic bottleneck during the introduction, showing further a strong geographical genetic differentiation between populations in the natal and novel environments. In addition mtDNA sequences analysis showed evidence of a single main event of introduction in Chile, unlike the North American situation, where there is evidence for multiple introductions. The significance of the loss of genetic diversity during introductions related to the success of parasitoids as biocontrol agents in classical biological control programs is discussed.

Keywords

Genetic bottleneck Classic biological control Biological invasions Aphid parasitoids Aphidius ervi 

Notes

Acknowledgments

The authors thank Cinthya Villegas, Marcos Dominguez and Sebastian Ortiz for their valuable support in laboratory and fieldwork. Thanks to Bernard Chaubet for his help on the species identification and sex determination of the parasitoids, and to Lucie Mieuzet for her help on the experimental part. The authors thank Heidi Connahs as well for the English corrections. This work was funded by FONDECYT 1110341 Grant to BL. FZP also thanks to CONICYT for a PhD fellowship, DID-UACh for a Ph.D. thesis Grant, and MECESUP AUS 0703 Grant to UACh for funding national and international internships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10530_2015_1029_MOESM1_ESM.doc (182 kb)
Supplementary material 1 (DOC 182 kb)

References

  1. Baker D, Loxdale H, Edwards O (2003) Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M’intosh) (Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Mol Ecol 12:3303–3311CrossRefPubMedGoogle Scholar
  2. Beebee TJC, Rowe G (2008) An introduction to molecular ecology. Oxford University Press, OxfordGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L et al (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UMR 5000:1996–2004Google Scholar
  4. Bilodeau E, Simon J-C, Guay J-F et al (2013) Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evol Ecol 27:165–184CrossRefGoogle Scholar
  5. Boer JG, Kuijper B, Heimpel GE et al (2012) Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula? Evol Appl 5:444–454CrossRefPubMedCentralPubMedGoogle Scholar
  6. Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796CrossRefPubMedGoogle Scholar
  7. Chevin LM, Lande R (2010) When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population? Evolution 64:1143–1150CrossRefPubMedGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  9. Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  10. Drummond A, Ashton B, Buxton S et al (2011) Geneious, version 5. 4. Geneious, AucklandGoogle Scholar
  11. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  12. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. Biocontrol 46:387–400CrossRefGoogle Scholar
  13. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  15. Facon B, Hufbauer RA, Tayeh A et al (2011) Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol 21:424–427CrossRefPubMedGoogle Scholar
  16. Fauvergue X, Vercken E, Malausa T et al (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443CrossRefPubMedCentralPubMedGoogle Scholar
  17. Ferrari J, Via S, Godfray HCJ (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62:2508–2524CrossRefPubMedGoogle Scholar
  18. Frakham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  19. Frankham R, Ballou JD, Briscoe AD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475CrossRefPubMedGoogle Scholar
  21. Franks SJ, Pratt PD, Tsutsui ND (2011) The genetic consequences of a demographic bottleneck in an introduced biological control insect. Conserv Genet 12:201–211CrossRefGoogle Scholar
  22. Garza J, Williamson E (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  23. Gerding MP, Zuñiga ES, Quiroz CE, Norambuena HM, Vargas RM (1989) Abundancia relativa de los parasitoides de Sitobion avenae (F) y Metopolophium dirhodum (WLK) (Homoptera:Aphididae) en diferentes áreas geográficas de Chile. Agricultura técnica (Chile) 49:104–114Google Scholar
  24. Grevstad F, Coombs E, McEvoy P et al (2013) Revisiting release strategies in biological control of weeds: are we using enough releases? 13th International symposium on the biological control of weeds, Hawaii, USA. US Forest Service Forest Health Technology Enterprise TeamGoogle Scholar
  25. Guillemaud T, Ciosi M, Lombaert E et al (2011) Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. CR Biol 334:237–246CrossRefGoogle Scholar
  26. Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803CrossRefPubMedGoogle Scholar
  27. Hoban SM, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol 22:3444–3450CrossRefPubMedGoogle Scholar
  28. Hollingsworth M, Hollingsworth P, Jenkins G et al (1998) The use of molecular markers to study patterns of genotypic diversity in some invasive alien Fallopia spp. (Polygonaceae). Mol Ecol 7:1681–1691CrossRefGoogle Scholar
  29. Hufbauer RA (2001) Pea aphid-parasitoid interactions: have parasitoids adapted to differential resistance? Ecology 82:717–725Google Scholar
  30. Hufbauer RA (2002) Evidence for nonadaptive evolution in parasitoid virulence following a biological control introduction. Ecol Appl 12:66–78CrossRefGoogle Scholar
  31. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  32. Hufbauer R, Bogdanowicz S, Harrison R (2004) The population genetics of a biological control introduction: mitochondrial DNA and microsatellie variation in native and introduced populations of Aphidius ervi, a parasitoid wasp. Mol Ecol 13:337–348CrossRefPubMedGoogle Scholar
  33. Lande R (2015) Evolution of phenotypic plasticity in colonizing species. Mol Ecol 24:2038–2045CrossRefPubMedGoogle Scholar
  34. Leberg P (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449CrossRefPubMedGoogle Scholar
  35. Lloyd CJ, Hufbauer RA, Jackson A et al (2005) Pre-and post-introduction patterns in neutral genetic diversity in the leafy spurge gall midge Spurgia capitigena (Bremi) (Diptera: Cecidomyiidae). Biol Control 33:153–164CrossRefGoogle Scholar
  36. Lombaert E, Guillemaud T, Cornuet J-M et al (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One 5:e9743. doi: 10.1371/journal.pone.0009743 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Lombaert E, Estoup A, Facon B et al (2014) Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. J Evol Biol 27:508–517CrossRefPubMedGoogle Scholar
  38. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  39. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability of populations. Evolution 29:1–10Google Scholar
  40. Nicol D, Armstrong K, Wratten S et al (1998) Genetic diversity of an introduced pest, the green spruce aphid Elatobium abietinum (Hemiptera: Aphididae) in New Zealand and the United Kingdom. Bull Entomol Res 88:537–543CrossRefGoogle Scholar
  41. Nyabuga FN, Loxdale HD, Heckel DG et al (2011) Temporal genetic structuring of a specialist parasitoid, Lysiphlebus hirticornis Mackauer (Hymenoptera: Braconidae) attacking a specialist aphid on tansy. Biol J Linn Soc 102:737–749CrossRefGoogle Scholar
  42. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedCentralPubMedGoogle Scholar
  43. Peccoud J, Figueroa C, Silva A et al (2008) Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol Ecol 17:4608–4618CrossRefPubMedGoogle Scholar
  44. Peccoud J, Ollivier A, Plantegenest M et al (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc Natl Acad Sci 106:7495–7500CrossRefPubMedCentralPubMedGoogle Scholar
  45. Peery MZ, Kirby R, Reid BN et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418CrossRefPubMedGoogle Scholar
  46. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. Montpellier, FranceGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  48. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283Google Scholar
  50. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  51. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899CrossRefPubMedGoogle Scholar
  52. Roderick G, Navajas M (2008) The primacy of evolution in biological control. In: Proceedings of the XII international symposium on biological control of weeds: La Grande Motte, France, 22–27 April 2007. CABI, pp 403–409Google Scholar
  53. Roderick GK, Hufbauer R, Navajas M (2012) Evolution and biological control. Evol Appl 5:419–423CrossRefPubMedCentralPubMedGoogle Scholar
  54. Rojas S (2005) Control biológico de plagas en Chile. Historia y avances. Colección libros INIA N°12. 123p. Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Cruz, La Cruz, ChileGoogle Scholar
  55. Simon C, Frati F, Beckenbach A et al (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  56. Simon J-C, Carre S, Boutin M et al (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond Ser B Biol Sci 270:1703–1712CrossRefGoogle Scholar
  57. Starý P (1993) The fate of released parasitoids (Hymenoptera: Braconidae, Aphidiinae) for biological control of aphids in Chile. Bull Entomol Res 83:633–639CrossRefGoogle Scholar
  58. Starý P (1995) The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Deutsche Entomologische Zeitschrift 42:113–138CrossRefGoogle Scholar
  59. Starý P, Gerding I, Norambuena I et al (1993) Environmental research on aphid parasitoid biocontrol agents in Chile (Hym., Aphidiidae; Hom., Aphidoidea). J Appl Entomol 115:292–306CrossRefGoogle Scholar
  60. Stilmant D, Van Bellinghen C, Hance T, Boivin G (2008) Host specialization in habitat specialists and generalists. Oecologia 156:905–912CrossRefPubMedGoogle Scholar
  61. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524CrossRefPubMedGoogle Scholar
  62. Taylor S, Downie D, Paterson I (2011) Genetic diversity of introduced populations of the water hyacinth biological control agent Eccritotarsus catarinensis (Hemiptera: Miridae). Biol Control 58:330–336CrossRefGoogle Scholar
  63. Tien N, Sabelis M, Egas M (2015) Inbreeding depression and purging in a haplodiploid: gender-related effects. Heredity 114:327–332CrossRefPubMedGoogle Scholar
  64. Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci 100:1078–1083CrossRefPubMedCentralPubMedGoogle Scholar
  65. Unruh T, White W, Gonzalez D et al (1983) Heterozygosity and effective size in laboratory populations of Aphidius ervi [Hym.: Aphidiidae]. Entomophaga 28:245–258CrossRefGoogle Scholar
  66. Van Oosterhout C, Hutchinson WF, Wills DP et al (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  67. Vorsino AE, Wieczorek AM, Wright MG et al (2014) Genetic analysis of an introduced biological control agent reveals temporal and geographic change, with little evidence of a host mediated shift. Biol Control 77:41–50CrossRefGoogle Scholar
  68. Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC et al (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999CrossRefPubMedCentralPubMedGoogle Scholar
  69. Zepeda-Paulo FA, Lavandero B, Mahéo F, Dion E, Outreman Y, Simon J-C, Figueroa CC (2015) Does sex-biased dispersal account for the lack of geographic and host-associated differentiation in introduced populations of an aphid parasitoid? Ecol Evol 5:2149–2161CrossRefPubMedCentralPubMedGoogle Scholar
  70. Zuñiga SE, Van den Bosch R, Drea J, Francis G (1986a) Control biológico de los áfidos (Homoptera: Aphididae) de los cereales de Chile. II. Obtención, introducción y cuarentena de depredadores y parasitoides. Agricultura Técnica (Chile) 46:479–487Google Scholar
  71. Zuñiga SE, Van den Bosch R, Drea JJ et al (1986b) [The biological control project against the cereal aphids (Hom., Aphididae) in Chile. 2: Exploration, importation and quarantine of predator and parasitoid species]. Agricultura Tecnica (Chile)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Zepeda-Paulo
    • 1
  • E. Dion
    • 3
  • B. Lavandero
    • 1
  • F. Mahéo
    • 3
  • Y. Outreman
    • 3
  • J. C. Simon
    • 3
  • C. C. Figueroa
    • 1
    • 2
  1. 1.Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the AgroecosystemsUniversidad de TalcaTalcaChile
  3. 3.INRA, Institut de Génétique, Environnement et Protection des Plantes (UMR IGEPP)Le Rheu CedexFrance

Personalised recommendations