Biological Invasions

, Volume 18, Issue 2, pp 345–353 | Cite as

Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation

  • Aníbal Pauchard
  • Ann Milbau
  • Ann Albihn
  • Jake Alexander
  • Treena Burgess
  • Curtis Daehler
  • Göran Englund
  • Franz Essl
  • Birgitta Evengård
  • Gregory B. Greenwood
  • Sylvia Haider
  • Jonathan Lenoir
  • Keith McDougall
  • Erin Muths
  • Martin A. Nuñez
  • Johan Olofsson
  • Loic Pellissier
  • Wolfgang Rabitsch
  • Lisa J. Rew
  • Mark Robertson
  • Nathan Sanders
  • Christoph Kueffer
Invasion Note

Abstract

Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.

Keywords

Alien species Arctic Exotic species Biosecurity Migration Range expansion Risk Sub-polar 

References

  1. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661CrossRefPubMedCentralPubMedGoogle Scholar
  2. Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.1038/nature14952 Google Scholar
  3. Alsos I, Ware C, Elven R (2015) Past Arctic aliens have passed away, current ones may stay. Biol Invasions 17:3113–3123Google Scholar
  4. Bennett JR, Shaw JD, Terauds A, Smol JP, Aerts R, Bergstrom DM, Blais JM, Cheung WWL, Chown SL, Lea M-A, Nielsen UN, Pauly D, Reimer KJ, Riddle MJ, Snape I, Stark JS, Tulloch VJ, Possingham HP (2015) Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front Ecol Environ 13:316–324CrossRefGoogle Scholar
  5. Bertelsmeier C, Guénard B, Courchamp F (2013) Climate change may boost the invasion of the Asian Needle Ant. PLoS One 8(10):e75438CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bertelsmeier C, Luque GM, Hoffmann BD, Courchamp F (2015) Worldwide ant invasions under climate change. Biodivers Conserv 24:117–128CrossRefGoogle Scholar
  7. Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gegout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520CrossRefPubMedGoogle Scholar
  8. Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts predictions and progress towards control. Turner Review No. 17. Aust J Bot 56:279–310CrossRefGoogle Scholar
  9. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  10. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRefGoogle Scholar
  11. Crawford RMM (2014) Tundra-taiga biology: human, plant, and animal survival in the arctic. Oxford University Press, OxfordGoogle Scholar
  12. Duque A, Stevenson PR, Feeley KJ (2015) Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci 112:10744–10749CrossRefPubMedGoogle Scholar
  13. Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2013) Telling a different story: a global assessment of bryophyte invasions. Biol Invasions 15:1933–1946CrossRefGoogle Scholar
  14. Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2014) Little, but increasing evidence of impacts of alien bryophytes. Biol Invasions 16:1175–1184CrossRefGoogle Scholar
  15. Evengard B, McMichael A (2011) Vulnerable populations in the Arctic. Glob Health Action 4:3–5PubMedGoogle Scholar
  16. Fausch KD, Rieman BE, Dunham JB, Young MK, Peterson DP (2009) Invasion versus isolation: Trade-offs in managing native salmonids with barriers to upstream movement. Conserv Biol 23:859–870Google Scholar
  17. Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310CrossRefPubMedGoogle Scholar
  18. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115CrossRefGoogle Scholar
  19. Hein CL, Öhlund G, Englund G (2014) Fish introductions reveal the temperature dependence of species interactions. Proc R Soc Ser B 281:1471–2954Google Scholar
  20. Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055CrossRefGoogle Scholar
  21. IUCN/SSC (2013). Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission, viiii + 57 ppGoogle Scholar
  22. Jaenson TGT, Lindgren E (2011) The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tickborne Dis 2(1):44–49CrossRefGoogle Scholar
  23. Knapp RA, Briggs CJ, Smith TC, Maurer JR (2011) Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere 2:art93Google Scholar
  24. Kruckenhauser L, Pinsker W (2008) Microsatellite variation in autochthonous and introduced populations of the Alpine marmot (Marmota marmota) along a European west–east transect. J Zool Syst Evol Res 42:19–26CrossRefGoogle Scholar
  25. Kueffer C (2015) Mountain biomes. Oxf Bibliogr Ecol. doi:10.1093/obo/9780199830060-0119
  26. Kueffer C, McDougall K, Alexander J, Daehler C, Edwards PJ, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew L, Schroder M, Seipel T (2013) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas: patterns, problems and challenges. Springer, Dordrecht, pp 89–113CrossRefGoogle Scholar
  27. Kueffer C, Daehler C, Dietz H, McDougall K, Parks C, Pauchard A, Rew L (2014) The Mountain Invasion Research Network (MIREN). Linking local and global scales for addressing an ecological consequence of global change. GAIA 23:263–265CrossRefGoogle Scholar
  28. Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. Encycl Biodivers 4:599–611Google Scholar
  29. Lenoir J, Svenning JC (2015) Climate-related range shifts—towards a comprehensive research framework. Ecography 38:15–28CrossRefGoogle Scholar
  30. Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dulinger S, Pauli H, Willner W, Svenning JC (2010) Going against the flow: potential mechanisms for the unexpected downward range shifts of some mountain plant species despite a warming climate. Ecography 33:295–303Google Scholar
  31. Lenoir J, Virtanen R, Oksanen J, Oksanen L, Luoto M, Grytnes JA, Svenning JC (2012) Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Glob Ecol Biogeogr 21:851–860CrossRefGoogle Scholar
  32. Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267CrossRefPubMedGoogle Scholar
  33. McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C (2011) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387CrossRefGoogle Scholar
  34. Montgomery RR, Murray KO (2015) Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 13:317–325CrossRefPubMedGoogle Scholar
  35. Muths E, Pilliod DS, Livo LJ (2008) Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biol Conserv 141:1484–1492CrossRefGoogle Scholar
  36. Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359CrossRefPubMedGoogle Scholar
  37. Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8:e66832CrossRefPubMedCentralPubMedGoogle Scholar
  38. Palmer MV, Stoffregen WC, Rogers DG, Hamir AN, Richt JA, Pedersen DD, Waters WR (2004) West Nile virus infection in reindeer (Rangifer tarandus). J Vet Diagn Invest 16(3):219–222CrossRefPubMedGoogle Scholar
  39. Parkinson A, Koch A, Evengård B (2015) Infectious Disease in the Arctic: A Panorama in Transition. In: Evengård B, Nymand Larsen J, Paasche Ø (eds) The New Arctic. Springer International Publishing, Berlin, pp 239–257Google Scholar
  40. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  41. Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evolut 2:1818–1825CrossRefGoogle Scholar
  42. Pellissier L, Roger A, Bilat J, Rasmann S (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography 37:950–959CrossRefGoogle Scholar
  43. Petitpierre B, MacDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl. doi:10.1890/14-1871.1
  44. Pettersson L, Boman J, Juto P, Evander M, Ahlm C (2008) Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis 14(5):808–810CrossRefPubMedCentralPubMedGoogle Scholar
  45. Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28:46–54CrossRefGoogle Scholar
  46. Rodriguez-Cabal MA, Stuble KL, Guenard B, Dunn RR, Sanders NJ (2012) Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol Invasions 14:557–565CrossRefGoogle Scholar
  47. Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM et al (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108(220–225):3. doi:10.1073/pnas.1011723108 Google Scholar
  48. Rozzi R, Armesto JJ, Goffinet B, Buck W, Massardo F, Silander J, Arroyo MT, Russell S, Anderson CB, Cavieres LA (2008) Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Front Ecol Environ 6:131–137CrossRefGoogle Scholar
  49. Ruiz GM, Hewitt CL (2009) Latitudinal patterns of biological invasions in marine ecosystems: a polar perspective. In: Krupnik I et al (eds) Smithsonian at the Poles. Contributions to International Polar Year Science. Smithsonian Inst. Press, Washington, pp 347–358CrossRefGoogle Scholar
  50. Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B, Lindblom A, Forsman M, Sjöstedt A, Johansson A (2012) Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis 205:297–304CrossRefPubMedCentralPubMedGoogle Scholar
  51. Schock DM, Ruthig GR, Collins JP, Kutz SJ, Carrière S, Gau RJ, Veitch AM, Larter NC, Tate DP, Guthrie G (2010) Amphibian chytrid fungus and ranaviruses in the Northwest Territories, Canada. Dis Aquat Organ 92:231–240Google Scholar
  52. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Change Biol 13:288–299CrossRefGoogle Scholar
  53. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci 107:9689–9694CrossRefPubMedCentralPubMedGoogle Scholar
  54. Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob Change Biol 19:2082–2088CrossRefGoogle Scholar
  55. Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales LV, Wolf KM, Young DJ, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 22;7. doi: 10.1093/aobpla/plv056

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aníbal Pauchard
    • 1
    • 2
  • Ann Milbau
    • 3
    • 4
  • Ann Albihn
    • 5
    • 6
  • Jake Alexander
    • 7
  • Treena Burgess
    • 8
  • Curtis Daehler
    • 9
  • Göran Englund
    • 10
  • Franz Essl
    • 11
    • 12
  • Birgitta Evengård
    • 13
  • Gregory B. Greenwood
    • 14
  • Sylvia Haider
    • 15
    • 16
  • Jonathan Lenoir
    • 17
  • Keith McDougall
    • 18
  • Erin Muths
    • 19
  • Martin A. Nuñez
    • 20
  • Johan Olofsson
    • 10
  • Loic Pellissier
    • 21
    • 22
  • Wolfgang Rabitsch
    • 12
  • Lisa J. Rew
    • 23
  • Mark Robertson
    • 24
  • Nathan Sanders
    • 25
  • Christoph Kueffer
    • 7
    • 26
  1. 1.Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Institute of Ecology and Biodiversity (IEB)SantiagoChile
  3. 3.Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  4. 4.Department of Biodiversity and Natural EnvironmentResearch Institute for Nature and ForestBrusselsBelgium
  5. 5.National Veterinary InstituteUppsalaSweden
  6. 6.Deparment of Biomedical Sciences and Veterinary Public HealthSwedish University of Agricultural SciencesUppsalaSweden
  7. 7.Department of Environmental Systems Science, Institute of Integrative BiologyETH ZurichZurichSwitzerland
  8. 8.Centre for Phytophthora Science and ManagementMurdoch UniversityPerthAustralia
  9. 9.Department of BotanyUniversity of HawaiiHonoluluUSA
  10. 10.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  11. 11.Division of Conservation Biology, Vegetation and Landscape EcologyUniversity of ViennaViennaAustria
  12. 12.Environment Agency AustriaViennaAustria
  13. 13.Division of Infectious Diseases, Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
  14. 14.Mountain Research Initiative (MRI), Institute of GeographyUniversity of BernBernSwitzerland
  15. 15.Institute of Biology, Geobotany and Botanical GardenMartin Luther University Halle-WittenbergHalle (Saale)Germany
  16. 16.German Centre for Integrative Biodiversity Research (iDiv)LeipzigGermany
  17. 17.UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV)Université de Picardie Jules VerneAmiensFrance
  18. 18.Department of Ecology, Environment and EvolutionLa Trobe UniversityWodongaAustralia
  19. 19.Fort Collins Science CenterU.S. Geological SurveyFort CollinsUSA
  20. 20.Grupo de Ecología de InvasionesUniversidad Nacional del Comahue, INIBIOMA, CONICETBarilocheArgentina
  21. 21.Landscape Ecology, Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
  22. 22.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  23. 23.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  24. 24.Centre for Invasion Biology, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  25. 25.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  26. 26.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations