Advertisement

Biological Invasions

, Volume 18, Issue 8, pp 2159–2174 | Cite as

Variation in tussock architecture of the invasive cordgrass Spartina densiflora along the Pacific Coast of North America

  • Jesús M. CastilloEmail author
  • Brenda J. Grewell
  • Andrea J. Pickart
  • Enrique Figueroa
  • Mark Sytsma
Invasive Spartina

Abstract

Some introduced species spread rapidly beyond their native range and into novel habitats mediated by a high degree of phenotypic plasticity and/or rapid evolutionary responses. In this context, clonality has been described as a significant factor contributing to invasiveness. We studied the abiotic environment and the responses of different tussock architecture traits of the invasive cordgrass Spartina densiflora Brongn. (Poaceae). A common garden experiment and field studies of S. densiflora in salt marshes across a wide latitudinal gradient from California (USA) to British Columbia (Canada) provided a model system for an integrated study of the potential mechanisms underlying the response of invasive S. densiflora populations to changes in environmental conditions. Our results showed that S. densiflora is able to adjust to widely variable climate (specifically, air temperature and the duration of the growing season) and sediment conditions (specifically, texture and hypoxia) through phenotypical plastic key functional tussock traits (e.g. shoot density, height, above- and below-ground biomass allocation patterns). Root biomass increased in coarser sediments in contrast to rhizomes, which were more abundant in finer sediments. Above-ground biomass and leaf area index increased mainly with air temperature during summer, and more robust (taller and wider) shoots were associated with more oxygenated sediments. In view of our results, S. densiflora appears to be a halophyte with a high degree of phenotypic plasticity that would enable it to respond successfully to changes in the abiotic conditions of salt marshes driven by global climate change, such as increasing salinity and temperatures.

Keywords

Anoxia Climate change Invasive species Phenotypic plasticity Salt marshes Tussock traits 

Notes

Acknowledgments

The authors thank D. Kerr, N. Mikkelsen and Ch. van Ossenbruggen for their assistance in the field. Thanks to M. Moscow, C. J. Futrell, J. Grant, R. Miller, S. Wells and C. Peña for their help in the laboratory. We are also grateful to the California Department of Food and Agriculture, Oregon Department of Agriculture, Washington State Department of Agriculture, Vancouver Island Conservation Land Management Program and Ducks Unlimited Canada for their assistance. Jesús M. Castillo thanks to the Spanish Ministry of Education, Culture and Sport for a grant of staff mobility for university teachers.

References

  1. Abbas AM, Rubio-Casal AE, de Cires A, Figueroa E, Lambert AM, Castillo JM (2012) Effects of flooding on germination and establishment of the invasive cordgrass Spartina densiflora. Weed Res 52:269–276. doi: 10.1111/j.1365-3180.2012.00913.x CrossRefGoogle Scholar
  2. Abbas AM, Rubio-Casal AE, de Cires A, Figueroa E, Nieva JJ, Castillo JM (2014) Wrack burial reduces germination and establishment of the invasive cordgrass Spartina densiflora. Neobiota 21:65–79. doi: 10.3897/neobiota.21.4963 CrossRefGoogle Scholar
  3. Álvarez R, Mateos-Naranjo E, Gandullo J, Rubio-Casal AE, Moreno FJ, Figueroa ME, Castillo JM (2009) Ecotypic variations in PEPC activity of the cordgrass Spartina densiflora through its latitudinal distribution range. Plant Biol 12:154–160. doi: 10.1111/j.1438-8677.2009.00198.x CrossRefGoogle Scholar
  4. Ayres DR, Grotkopp E, Zaremba K, Sloop CM, Blum MJ, Bailey JP, Anttila CK, Strong DR (2008) Hybridization between invasive Spartina densiflora (Poaceae) and native S. foliosa in San Francisco Bay, California, USA. Am J Bot 95:713–719. doi: 10.3732/ajb.2007358 CrossRefPubMedGoogle Scholar
  5. Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168. doi: 10.1111/j.1365-2699.2005.01380.x CrossRefGoogle Scholar
  6. Carrión-Tacuri J, Rubio-Casal AE, de Cires A, Figueroa ME, Castillo JM (2011) Lantana camara L.: a weed with a great light-acclimation capacity. Photosynthetica 49:321–329. doi: 10.1007/s11099-011-0039-6 CrossRefGoogle Scholar
  7. Castillo JM, Fernández-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by differential ecophysiological tolerances. J Ecol 88:801–812. doi: 10.1046/j.1365-2745.2000.00492.x CrossRefGoogle Scholar
  8. Castillo JM, Rubio-Casal AE, Luque T, Figueroa ME, Nieva FJ (2003) Intratussock tiller distribution and biomass of Spartina densiflora Brongn. in an invaded salt marsh. Lagascalia 23:61–73Google Scholar
  9. Castillo JM, Redondo S, Wharmby C, Luque T, Figueroa ME (2005a) Environmental determination of shoot height in populations of the cordgrass Spartina maritima. Estuaries 28:761–766. doi: 10.1007/BF02732913 CrossRefGoogle Scholar
  10. Castillo JM, Rubio-Casal AE, Redondo S, Álvarez-López AA, Luque T, Luque C, Nieva FJ, Castellanos EM, Figueroa ME (2005b) Short-term responses to salinity of an invasive cordgrass. Biol Invasions 7:29–35. doi: 10.1007/1-4020-3870-4_4 CrossRefGoogle Scholar
  11. Castillo JM, Mateos-Naranjo E, Nieva FJ, Figueroa ME (2008) Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia 614:363–371. doi: 10.1007/s10750-008-9520-z CrossRefGoogle Scholar
  12. Castillo JM, Rubio-Casal AE, Figueroa E (2010) Cordgrass biomass in coastal marshes. In: Momba M, Bux F (eds) biomass. Sciyo, Croatia, pp 1–26Google Scholar
  13. Castillo JM, Grewell BJ, Pickart A, Bortolus A, Peña C, Figueroa E, Sytsma M (2014) Phenotypic plasticity of invasive Spartina densiflora (Poaceae) along the Pacific Coast of North America. Am J Bot 101:1–11. doi: 10.3732/ajb.1400014 CrossRefGoogle Scholar
  14. Čižková H, Istvánovics V, Bauer V, Balázs L (2001) Low levels of reserve carbohydrates in reed (Phragmites australis) stands of Kis-Balaton, Hungary. Aquat Bot 69:209–216. doi: 10.1016/S0304-3770(01)00139-5 CrossRefGoogle Scholar
  15. Costa CSB, Marangoni JC, Azevedo AMG (2003) Plant zonation in irregularly flooded salt marshes: the relative importance of stress tolerance and biological interactions. J Ecol 91:951–965. doi: 10.1046/j.1365-2745.2003.00821.x CrossRefGoogle Scholar
  16. Daehler CC, Strong D (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58. doi: 10.1016/0006-3207(96)00017-1 CrossRefGoogle Scholar
  17. Daleo P, Iribarne O (2009) The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. J Exp Mar Biol Ecol 373:66–71. doi: 10.1016/j.jembe.2009.03.005 CrossRefGoogle Scholar
  18. De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H et al (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795. doi: 10.1111/1365-2745.12074 CrossRefGoogle Scholar
  19. D’Hertefeldt T, Eneström JM, Pettersson LB (2014) Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria. PLoS ONE 9:e85407. doi: 10.1371/journal.pone.0085407 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Di Bella CE, Striker GG, Escaray FJ, Lattanzi FA, Rodriguez AM, Grimoldi AA (2014) Saline tidal flooding effects on Spartina densiflora plants from different positions of the salt marsh. Diversities and similarities on growth, anatomical and physiological responses. Environ Exp Bot 102:27–36. doi: 10.1016/j.envexpbot.2014.02.009 CrossRefGoogle Scholar
  21. Drake BG (1989) Photosynthesis of salt marsh species. Aquat Bot 34:167–1180. doi: 10.1016/0304-3770(89)90055-7 CrossRefGoogle Scholar
  22. Drenovsky RD, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153. doi: 10.1093/aob/mcs100 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duarte B, Couto T, Freitas J, Valentim J, Silva H, Marques JC, Dias JM, Caçador I (2013) Abiotic modulation of Spartina maritima photobiology in different latitudinal populations. Estuar Coast Shelf Sci 130:127–137. doi: 10.1016/j.ecss.2013.02.008 CrossRefGoogle Scholar
  24. Elsey-Quirk T, Seliskar DM, Gallagher JL (2011) Differential population response of allocation, phenology, and tissue chemistry in Spartina alterniflora. Plant Ecol 212:1873–1885. doi: 10.1007/s11258-011-9960-9 CrossRefGoogle Scholar
  25. Environment Canada (2002) Canadian Climate Normals, 1971-2000. http://www.climate.weatheroffice.ec.gc.ca/climate_normals. Accessed 28 December 2014
  26. Epstein E (1972) Mineral nutrition of plants. Principles and perspectives. Wiley, New YorkGoogle Scholar
  27. Federal Geographic Data Committee (2012) Coastal and Marine Ecological Classification Standard. Marine and Coastal Spatial Data Subcommittee. FGDC-STD-018-2012. U.S. Department of the Interior, Washington, DCGoogle Scholar
  28. Fortune PM, Schierenbeck K, Ayres D, Bortolus A, Catrice O, Brown S, Ainouche ML (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316. doi: 10.1111/j.1365-294X.2008.03916.x CrossRefPubMedGoogle Scholar
  29. Gee GW, Bauder JW (1986) Particle-size analysis. In: Page AL (ed) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monograph 9. American Society of Agronomy, Madison, pp 383–411Google Scholar
  30. Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci. doi: 10.3389/fpls.2014.00501 PubMedPubMedCentralGoogle Scholar
  31. Giurgevich JR, Dunn EL (1979) Seasonal patterns of CO2 and water vapor exchange of the tall and short height forms of Spartina alterniflora Loisel in a Georgia salt marsh. Oecologia 43:139–156. doi: 10.1007/BF00344767 CrossRefGoogle Scholar
  32. Granéli W, Weisner SEB, Sytsma MD (1992) Rhizome dynamics and resource storage in Phragmites australis. Wetlands Ecol Manage 1:239–247CrossRefGoogle Scholar
  33. Grewell BJ, Castillo JM, Skaer Thomason MJ, Drenovsky RE (2015) Phenotypic plasticity and population differentiation in response to salinity in the invasive cordgrass Spartina densiflora. In review: Biol Invasions (this issue)Google Scholar
  34. Hierro JL, Maron JL, Callaway R (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.0022-0477.2004.00953.x CrossRefGoogle Scholar
  35. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:4–32Google Scholar
  36. Howard VH, Sytsma MD (2013) Potential ocean dispersal of cordgrass (Spartina spp.) from core infestations. Invas Plant Sci Mana 6:250–259. doi: 10.1614/IPSM-D-12-00042.1 CrossRefGoogle Scholar
  37. Isacch JP, Costa CSB, Rodriguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900. doi: 10.1111/j.1365-2699.2006.01461.x CrossRefGoogle Scholar
  38. Jia X, Pan XY, Sosa A, Li B, Chen JK (2010) Differentiation in growth and biomass allocation among three native Alternanthera philoxeroides varieties from Argentina. Plant Spec Biol 25:85–92. doi: 10.1111/j.1442-1984.2010.00271.x CrossRefGoogle Scholar
  39. Kirwan ML, Gunterspergen GR, Morris J (2009) Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biol 15:1982–1989. doi: 10.1111/j.1365-2486.2008.01834.x CrossRefGoogle Scholar
  40. Lammi J (2008) Online-photoperiod calculator. http://www.sci.fi/~benefon/sol.html. Accessed 20 December 2014
  41. Lara MV, Casati P, Andreo CS (2001) In vivo phosphorylation of phosphoenolpyruvate carboxylase in Egeria densa, a submersed aquatic species. Plant Cell Physiol 42:441–445CrossRefPubMedGoogle Scholar
  42. Lemaire G, Chapman D (1996) Tissue flows in grazed plant communities. In: Hodgson J, Illius AW (eds) The ecology and management of grazing systems. CAB International, Wallingford, pp 3–36Google Scholar
  43. Madsen JD (1997) Seasonal biomass and carbohydrate allocation in a southern population of Eurasian watermilfoil. J Aquat Plant Manage 35:15–21Google Scholar
  44. Maricle BR, Lee RW, Hellquist CE, Kiirats O, Edwards GE (2007) Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses. Photosynthetica 45:433–440. doi: 10.1007/s11099-007-0072-7 CrossRefGoogle Scholar
  45. Martina JP, von Ende CN (2013) Increased spatial dominance in high nitrogen, saturated soil due to clonal architecture plasticity of the invasive wetland plant, Phalaris arundinacea. Plant Ecol 214:1443–1453. doi: 10.1007/s11258-013-0265-z CrossRefGoogle Scholar
  46. Mateos-Naranjo E, Redondo-Gómez S, Luque CJ, Castellanos EM, Davy AJ, Figueroa ME (2008) Environmental limitations on recruitment from seed in invasive Spartina densiflora on a southern European salt marsh. Estuar Coast Shelf Sci 79:727–732. doi: 10.1016/j.ecss.2008.06.017 CrossRefGoogle Scholar
  47. Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Ann NY Acad Sci 1206:35–55. doi: 10.1111/j.1749-6632.2010.05704.x CrossRefPubMedGoogle Scholar
  48. Montemayor DI, Canepuccia AD, Pascual J, Iribarne OO (2014) Aboveground biomass patterns of dominant Spartina species and their relationship with selected abiotic variables in Argentinean SW Atlantic marshes. Estuar Coast 37:411–420. doi: 10.1007/s12237-013-9688-y CrossRefGoogle Scholar
  49. Morgan VH, Sytsma M (2010) Alaska Spartina prevention, detection and response plan. https://alaskafisheries.noaa.gov/shorezone/reports/akspartina_plan.pdf. Accessed 28 January 2015
  50. National Climatic Data Center (NCDC) (2004) Climatography of the United States No. 20, Monthly Station Climate Summaries, 1971–2000. National Oceanic and Atmospheric Administration, Asheville, NCGoogle Scholar
  51. National Climatic Data Center (NCDC) (2013) http://www.ncdc.noaa.gov/. Accessed 15 November 2014
  52. National Renewable Energy Laboratory (NREL) (1992) National Solar Radiation Database. 30-year averages of monthly solar radiation and illuminance, 1961–1990. National Climatic Data Center, Asheville, NCGoogle Scholar
  53. Natural Resource Canada (NRC) (2009) Photovoltaic potential and solar resource of Canada. https://glfc.cfsnet.nfis.org/mapserver/pv/index.php. Accessed 15 November 2014
  54. Nelson N (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380Google Scholar
  55. Nieva FJ, Castellanos EM, Figueroa ME (2001a) Effects of light and salinity on seed germination in the marsh invader Spartina densiflora Brong., 1829 (Gramineae) from Gulf of Cadiz—Spain. Boletín de la Real Sociedad Española de Historia Natural 96:117–124Google Scholar
  56. Nieva FJ, Diaz-Espejo A, Castellanos EM, Figueroa ME (2001b) Field variability of invading populations of Spartina densiflora Brong. grown in different habitats of the Odiel marshes (SW Spain). Estuar Coast Shelf S 52:515–552. doi: 10.1006/ecss.2000.0750 CrossRefGoogle Scholar
  57. Nieva FJJ, Castellanos EM, Castillo JM, Figueroa ME (2005) Clonal growth and tiller demography of the invader cordgrass Spartina densiflora Brongn at two contrasting habitats in SW European salt marshes. Wetlands 25:122–129. doi: 10.1672/0277-5212(2005)025[0122:CGATDO]2.0.CO;2 CrossRefGoogle Scholar
  58. Owens CS, Madsen JD (1998) Phenological studies of carbohydrate allocation in Hydrilla. J Aquat Plant Manage 36:40–44Google Scholar
  59. Pennington TG, Sytsma MD (2009) Seasonal changes in carbohydrate and nitrogen concentrations in Oregon and California populations of Brazilian egeria (Egeria densa). Invasive Plant Sci Manag 2:120–129CrossRefGoogle Scholar
  60. Perkins MA, Sytsma MD (1987) Harvesting and carbohydrate accumulation in Eurasian watermilfoil. J Aquat Plant Manage 25:57–62Google Scholar
  61. Pfauth M, Sytsma M, Isaacson D (2007) Oregon Spartina response plan. Oregon Department of Agriculture, PortlandGoogle Scholar
  62. Pickart A (2001) The distribution of Spartina densiflora and two rare salt marsh plants in Humboldt Bay 1998–1999. Technical Report. US Fish and Wildlife Service, Humboldt Bay National Wildlife Refuge, Arcata, CaliforniaGoogle Scholar
  63. Prati D, Schmid B (2000) Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90:442–456. doi: 10.1034/j.1600-0706.2000.900303.x CrossRefGoogle Scholar
  64. Price EAC, Gamble R, Williams GG, Marshall C (2001) Seasonal patterns of partitioning and remobilization of C-14 in the invasive rhizomatous perennial Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene). Evol Ecol 15:347–362. doi: 10.1023/A:1016036916017 CrossRefGoogle Scholar
  65. Qing H, Yao Y, Xiao Y, Hu F, Sun Y, Zhou C, An S (2011) Invasive and native tall forms of Spartina alterniflora respond differently to nitrogen availability. Acta Oecol 37:23–30. doi: 10.1016/j.actao.2010.11.002 CrossRefGoogle Scholar
  66. Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik PC (2007) Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. J Ecol 95:397–405. doi: 10.1111/j.1365-2745.2007.01216.x CrossRefGoogle Scholar
  67. Saarela JM (2012) Taxonomic synopsis of invasive and native Spartina (Poaceae, Chloridoideae) in the Pacific Northwest (British Columbia, Washington and Oregon), including the first report of Spartina × townsendii for British Columbia, Canada. PhytoKeys 10:25–82. doi: 10.3897/phytokeys.10.2734 CrossRefPubMedGoogle Scholar
  68. Sawada S, Nakajima Y, Tsukuda M, Sasaki K, Hazama Y et al (1994) Ecotypic differentiation of dry-matter production processes in relation to survivorship and reproductive potential in Plantago asiatica populations along climatic gradients. Funct Ecol 8:400–409. doi: 10.2307/2389834 CrossRefGoogle Scholar
  69. Smith D, Klohr S, Zaremba K (2001) San Francisco Bay and beyond: invasive Spartina continues to spread among Pacific estuaries. ANS Digest 4:46–47Google Scholar
  70. Spicher D, Josselyn M (1985) Spartina (Gramineae) in Northern California: distribution and taxonomic notes. Madroño 32:158–167Google Scholar
  71. Swank JC, Below FE, Lambert RJ, Hageman RH (1982) Interaction of carbon and nitrogen metabolism in the productivity of maize. Plant Physiol 70:1185–1190CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thakur MP, Reich PB, Eddy WC, Stefanski A, Rich R, Hobbie SE, Eisenhauer N (2014) Some plants like it warmer: increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia 57:57–60. doi: 10.1016/j.pedobi.2013.12.002 CrossRefGoogle Scholar
  73. Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249. doi: 10.1016/0169-5347(91)90070-E CrossRefPubMedGoogle Scholar
  74. Trnka S, Zedler JB (2000) Site conditions, not parental phenotype, determine the height of Spartina foliosa. Estuaries 23:572–582. doi: 10.2307/1353147 CrossRefGoogle Scholar
  75. Verburg R, Grava D (1998) Differences in allocation patterns in clonal and sexual offspring in a woodland pseudo-annual. Oecologia 115:472–477. doi: 10.1007/s004420050543 CrossRefGoogle Scholar
  76. Wang MT, Zhao ZG, Du GZ, He YL (2008) Effects of light on the growth and clonal reproduction of Ligularia virgaurea. J Integr Plant Biol 50:1015–1023. doi: 10.1111/j.1744-7909.2008.00645.x CrossRefPubMedGoogle Scholar
  77. Wang L, Li L, Chen X, Tian X, Wang X, Luo G (2014) Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 9:1–9. doi: 10.1371/journal.pone.0093566 Google Scholar
  78. Wigand C, Roman ChT, Davey E, Stolt M, Johnson R, Hanson A et al (2014) Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecol Appl 24:633–649. doi: 10.1890/13-0594.1 CrossRefPubMedGoogle Scholar
  79. Williams DG, Mack RN, Black RN (1995) Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecol 76:1569–1580. doi: 10.2307/1938158 CrossRefGoogle Scholar
  80. Xiong SJ, Katterer T (2010) Carbon-allocation dynamics in reed canary grass as affected by soil type and fertilization rates in northern Sweden. Acta Agric Scand B-S P 60:24–32. doi: 10.1080/09064710802558518 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jesús M. Castillo
    • 1
    Email author
  • Brenda J. Grewell
    • 2
  • Andrea J. Pickart
    • 3
  • Enrique Figueroa
    • 1
  • Mark Sytsma
    • 4
  1. 1.Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevilleSpain
  2. 2.USDA-ARS Exotic and Invasive Weeds Research UnitUniversity of CaliforniaDavisUSA
  3. 3.U.S. Fish and Wildlife ServiceHumboldt Bay National Wildlife RefugeArcataUSA
  4. 4.Center for Lakes and ReservoirsPortland State UniversityPortlandUSA

Personalised recommendations