Assessing current and future risks of invasion by the “green cancer” Miconia calvescens

Abstract

Miconia calvescens D.C. appears in the list “100 of the world’s worst invasive alien species”, devised by the IUCN. It is considered the worst plant pest in Hawaii and French Polynesia. This species has also invaded the rain forest of Australia, New Caledonia and Sri Lanka, where it is extremely difficult to eradicate. To assess the susceptibility to invasion by M. calvescens in new areas, we investigated the current and future suitable areas for this aggressive invader worldwide. We also assessed the protected areas currently at risk of invasion by considering botanic gardens as a proxy for likelihood of introduction, since most successful invasions by M. calvescens originated from private or public garden escapees. Our results predict that about 7.2 % of total landmass is currently suitable for M. calvescens, with 54.8 % outside the native range including 44.5 % within tropical forests in the southern hemisphere. We identified 91 countries, 400 islands, and up to 364 protected areas with suitable environments outside of M. calvescens native range. By the 2080s, worldwide land suitable for M. calvescens is predicted to be reduced by up to half due to climate change. This decrease is mainly predicted to occur in M. calvescens native ranges as well as in countries where the presence of the species has not yet been reported. In contrast, the invaded range is predicted to slightly decrease, showing an interesting example of a double negative effect of climate change on the distribution of an invader. Our work provides information for land managers and stakeholders that can help to avert the introduction and spread of M. calvescens in their territories. We also emphasize the importance of risk assessments on the living collections of botanic gardens, as a common source of escapees of invasive plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619

    Article  PubMed  Google Scholar 

  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 46:1223–1232

    Article  Google Scholar 

  3. Araújo MB, New N (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  5. Beaumont LJ, Gallagher RV, Downey PO, Thuiller W, Leishman MR, Hughes L (2009a) Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32(5):757–764

    Article  Google Scholar 

  6. Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009b) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  7. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19(12):3740–3748

    Article  Google Scholar 

  8. Bertelsmeier C, Luque GM, Courchamp F (2013) Global warming may freeze the invasion of big-headed ants. Biol Invasions 15:1561–1572

    Article  Google Scholar 

  9. Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521

    Article  Google Scholar 

  10. Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K (2013) Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36(9):971–983

    Article  Google Scholar 

  11. Breiman L (2001) Random forests. Mach Learn 45(5):32

    Google Scholar 

  12. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. The Wadsworth statistics probability series. Chapman and Hall, New York

    Google Scholar 

  13. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    CAS  Article  PubMed  Google Scholar 

  14. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157

    Article  Google Scholar 

  15. Chan-Halbrendt C, Lin T, Yang F, Sisior G (2010) Hawaiian residents’ preferences for M. calvescens control program attributes using conjoint choice experiment and latent class analysis. Environ Manag 45:250–260

    Article  Google Scholar 

  16. Corlett RT (2010) Invasive aliens on tropical East Asian islands. Biodivers Conserv 19:411–423

    Article  Google Scholar 

  17. Csurhes SM (1998) Miconia calvescens, a potentially invasive plant in Australia’s tropical and sub-tropical rainforests. In: Meyer JY, Smith CW (ed) Proceedings of the first regional conference on Miconia calvescens control. Papeete, Tahiti, French Polynesia. Gouvernement de Polynésie française/University of Hawai’i at Manoa/Centre ORSTOM de Tahiti, pp 72–77

  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  19. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  20. Florence J (1993) La végétation de quelques îles de Polynésie. In: Dupon F (ed) Atlas de la Polynésie française. ORSTO, Paris, pp 54–55

    Google Scholar 

  21. Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (2013) Plant invasions in protected areas: patterns, problems and challenges. Invading nature, Springer series in invasion ecology, vol 7. Springer, New York

    Google Scholar 

  22. Friedman AR, Hwang YT, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature asymmetry over the 20th century and in future projections. J Clim 26(15):5419–5433

    Article  Google Scholar 

  23. Gallagher RV, Hughes L, Leishman MR, Wilson PD (2010a) Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol Invasions 12(12):4049–4063

    Article  Google Scholar 

  24. Gallagher RV, Beaumont LJ, Hughes L, Leishman MR (2010b) Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J Ecol 98:790–799

    Article  Google Scholar 

  25. Gallagher RV, Englert Duursma D, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975

    Article  Google Scholar 

  26. Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  27. Genovesi P (2005) Eradications of invasive alien species in Europe: a review. Biol Invasions 7:127–133

    Article  Google Scholar 

  28. Goarant AG, Meyer JY (2009) Attempting the eradication of M. calvescens in a comprehensive strategy to control invasive species in New Caledonia. In: Loope LL, Meyer JY, Hardesty DB, Smith CW (eds) Proceedings of the international M. calvescens conference, Keanae, Maui, Hawaii, May 4–7, 2009, Maui Invasive Species Committee and Pacific Cooperative Studies Unit, University of Hawaii at Manoa, pp 1–6

  29. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  30. Hardesty BD, Metcalfe SS, Westcott DA (2011) Persistence and spread in a new landscape: dispersal ecology and genetics of M. calvescens invasions in Australia. Acta Oecol 37:657–665

    Article  Google Scholar 

  31. Hardesty BD, Le Roux JJ, Rocha OJ, Meyer JY, Westcott D, Wieczorek AM (2012) Getting here from there: testing the genetic paradigm underpinning introduction histories and invasion success. Divers Distrib 18:147–157

    Article  Google Scholar 

  32. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  33. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  Google Scholar 

  34. Havens K (2006) Developing an invasive plant policy at a botanic garden: lessons learned. BGjournal 3:22–24

    Google Scholar 

  35. Hester SM, Brooks SJ, Cacho OJ, Panetta FD (2010) Applying a simulation model to the management of an infestation of M. calvescens in the wet tropics of Australia. Weed Res 50:269–279

    Article  Google Scholar 

  36. Heywood VH, Sharrock S (2013) European code of conduct for botanic gardens on invasive alien species. Council of Europe Publishing, Strasbourg; Botanic Gardens Conservation International, Richmond

  37. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978

    Article  Google Scholar 

  38. Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26(4):168–174

    Article  PubMed  Google Scholar 

  39. IPCC (2013) Climate change 2013, the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  40. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  41. Kaiser BA (2006) Economic impacts of non-indigenous species: M. calvescens and the Hawaiian economy. Euphytica 148:135–150

    Article  Google Scholar 

  42. Kier G, Kreft H, Ming T, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. PNAS 23:9322–9327

    Article  Google Scholar 

  43. Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudoacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390

    Article  Google Scholar 

  44. LaRosa AM, Purrell M, Franklin J, Denslow J (2007) Designing a control strategy for M. calvescens in Hawaii using spatial modelling. In: 9th international conference on the ecology and management of alien plant invasions, Perth, Australia

  45. Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson RM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17(5):1015–1029

    Article  Google Scholar 

  46. Lenoir J, Gégout JC, Marquet PM, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    CAS  Article  PubMed  Google Scholar 

  47. Liu C, Berry BM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  48. Liu C, White M, Newell G (2009) Measuring the accuracy of species distribution models: a review. 18th World IMACS/MODSIM Congress, Cairns, Australia

  49. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, West Sussex, p 36

    Google Scholar 

  50. Loope L, Medeiros AC (1995) Strategies for long-term protection of biological diversity in native rain forest of Haleakala National Park and East Maui, Hawaii. Endanger Species Update 12(6):1–5

    Google Scholar 

  51. Lowe S, Browne M, Boudjelas S, de Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), 12 pp

  52. Marris E (2006) Plant science: gardens in full bloom. Nature 440:860–863

    CAS  Article  PubMed  Google Scholar 

  53. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  54. Medeiros AC, Loope LL (1997) Status, ecology, and management of the invasive plant, M. calvescens DC (Melastomataceae) in the Hawaiian Islands. Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 48:23–36

  55. Meyer JY (1994) Mécanismes d’invasion de M. calvescens DC en Polynésie française. Ph.D. Thesis. Université Montpellier II Sciences et Techniques du Languedoc, Montpellier

  56. Meyer JY (1996) Status of M. calvescens (Melastomataceae), a dominant invasive tree in the Society Islands (French Polynesia). Pac Sci 50(1):66–76

    Google Scholar 

  57. Meyer JY (1998) Observations on the reproductive biology of M. calvescens DC (Melastomataceae), an alien invasive tree in the island of Tahiti (South Pacific Ocean). Biotropica 30(4):609–624

    Article  Google Scholar 

  58. Meyer JY (2010) The M. calvescens saga: 20 years of study and control in French Polynesia (1988–2008). In: Loope LL, Meyer JY, Hardesty BD, Smith CW (eds) Proceedings of the international M. calvescens conference, Keanae, Maui, Hawaii. Maui Invasive Species Committee and Pacific Cooperative Studies Unit. University of Hawaii, Manoa, pp 1–19

  59. Meyer JY, Florence J (1996) Tahiti native flora endangered by the invasion of M. calvescens DC. (Melastomataceae). J Biogeogr 23:775–781

    Article  Google Scholar 

  60. Meyer JY, Lavergne C (2001) The role of forest structure in plant invasions on tropical oceanic islands. In: Ganeshaiah KN, Shaanker U, Bawa KS (eds) Tropical ecosystems: structure, diversity and human welfare. Proceedings of the international conference on tropical ecosystems. Oxford–IBH, New Delhi, pp 456–458

  61. Meyer JY, Loope LL, Goarant A (2011) Strategy to control the invasive alien tree M. calvescens in Pacific islands: eradication, containment or something else? In: Veitch CR, Clout AN, Towns DR (eds) Island invasives: eradication and management. IUCN, Gland and CBB, Auckland, pp 91–96

    Google Scholar 

  62. Murphy HT, Hardesty BD, Fletcher CS, Metcalfe DJ, Wescott DA, Brooks SJ (2008) Predicting dispersal and recruitment of M. calvescens (Melastomataceae) in Australian tropical rain forest. Biol Invasions 10:925–936

    Article  Google Scholar 

  63. Parker IM, Simberloff D, Londsdale WD, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  64. Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distributions of invasive Eurasian annual grasses: a South African perspective. Clim Change 94(1–2):87–103

    Article  Google Scholar 

  65. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  Article  PubMed  Google Scholar 

  66. Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  67. Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51(5):363–371

    Article  Google Scholar 

  68. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335(6074):1344–1348

    CAS  Article  PubMed  Google Scholar 

  69. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251

    Article  Google Scholar 

  70. Pimentel D, Zúniga R, Morrison D (2005) Update on the environmental and the economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  71. Pouteau R, Meyer JY, Soll B (2011) A SVM-based model for predicting distribution of the invasive tree M. calvescens in tropical rain forest. Ecol Model 222:2631–2641. doi:10.1016/j.ecolmodel.2011.04.030

    Article  Google Scholar 

  72. Pyšek P, Jarošίk J, Kučerac T (2002) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24

    Article  Google Scholar 

  73. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51:103–113

    Article  Google Scholar 

  74. Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 332–355

    Google Scholar 

  75. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935

    Article  Google Scholar 

  76. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  77. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  78. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tablacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66

    Article  PubMed  Google Scholar 

  79. Teoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting non-indigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  Google Scholar 

  80. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  81. Van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-termmulti-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energy J 27:201–233

    Google Scholar 

  82. Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    CAS  Article  Google Scholar 

  83. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  84. Vicente J, Alves P, Randin C, Guisan A, Honrado J (2010) What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in Northern Portugal. Ecography 33:1081–1092

    Article  Google Scholar 

  85. Vicente J, Randin C, Gonçalves J, Metzger M, Lomba A, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13(5):209–1227

    Article  Google Scholar 

  86. Vicente JA, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôças I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195

    CAS  Article  Google Scholar 

  87. Vitousek PM, D´Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84(5):218–228

    Google Scholar 

  88. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(28):389–395

    CAS  Article  PubMed  Google Scholar 

  89. Whitmore TC (1991) Tropical rain forest dynamics and its implications for management. In: Gómez-Pompa A, Whitmore TC, Hadley M (eds) Rain Forest Regeneration and Management. Parthenon Publishing, Lancaster, and UNESCO, Paris, pp 67–89

  90. Williams KJ, Ford A, Rosauer CF, De Silva N, Russell Mittermeier CB, Larsen FW, Margules C (2011) Forests of East Australia: the 35th biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots distribution and protection of conservation priority areas. Springer, Vienna, pp 295–310

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the helpful comments of the editor and of two anonymous reviewers. This work was performed during a stay of NGM at the Laboratoire d´Écologie Systématique et Evolution at Université Paris-Sud. NGM was funded by a postdoctoral contract and a grant for short stays abroad of the Universidad de Alcalá. CB, CL and FC were supported by a BiodivERsa Eranet grant. We are grateful to the O’ahu and Kauai Invasive Species Committees their help with the occurrence data of M. calvescens at Hawaii. NGM thanks Juan Fernández (Université Paris-Sud) for the fruitful discussions during the data analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noelia González-Muñoz.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Muñoz, N., Bellard, C., Leclerc, C. et al. Assessing current and future risks of invasion by the “green cancer” Miconia calvescens . Biol Invasions 17, 3337–3350 (2015). https://doi.org/10.1007/s10530-015-0960-x

Download citation

Keywords

  • Miconia calvescens
  • Climate change
  • Species distribution model
  • Botanic gardens
  • Protected areas