Biological Invasions

, Volume 18, Issue 8, pp 2137–2151 | Cite as

Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England

  • Dalibor Huska
  • Ilia J. Leitch
  • Julie Ferreira de Carvalho
  • Andrew R. Leitch
  • Armel Salmon
  • Malika Ainouche
  • Ales KovarikEmail author
Invasive spartina


In Southampton Water, UK, the recent (c. 150 years ago) interspecific hybridisation between Spartina alterniflora (2n = 6x = 62; A-genome) and S. maritima (2n = 6x = 60; M-genome) gave rise to the homoploid hybrid (S. × townsendii, 2n = 6x = 62), and subsequently to the invasive allododecaploid species S. anglica (2n = 12x = 120–124) that has since spread worldwide. To address the question of dynamics of mixed ploidy populations involving these plants, we analysed several Spartina populations (fifty one individuals) in Southern England, UK, one of which was the presumed place of origin of the homoploid hybrid (Hythe). Using a combination of flow cytometry and ribosomal DNA (rDNA) genotyping we were able to identify the genomic composition and ploidy level of each individual analysed. The data show that the homoploid hybrid still dominates the population at Hythe (82 % of individuals collected in that locality) since its origin in the nineteenth century. We also identified S. × townsendii for the first time on Hayling Island (66 % individuals), indicating dispersal beyond its likely origin. The fertile allododecaploid S. anglica was mainly found in populations outside the initial hybridisation site, on Hayling Island and at Eling Marchwood. Quantification of the rDNA contributions from each parental genome showed that the ratios were mostly balanced in S. × townsendii. However, two (3 %) S. anglica individuals analysed have lost nearly all M-genome homeologs, indicating extensive repeat loss. Such variation indicates that despite the presumed single allopolyploid origin of S. anglica and genetic uniformity at other loci, it has undergone substantial changes at the rDNA loci following genome duplication.


Spartina Allopolyploidy Cytotypes Genetic markers rDNA Biodiversity 



We thank the New Forest District Council, Associated British Ports, and Northney Marina for granting us permission to collect Spartina plants. We thank Dr Sonia Garcia (University of Barcelona for helpful discussion in the course of manuscript preparation. The work was funded by the Czech Science Foundation (P501/13/10057S), the French CNRS—University of Rennes 1 International Associated Laboratory Ecological Genomics of Polyploidy (ECOGEN), the Partner University Funds, NERC (UK), and the Czech-French research Barrande program.

Supplementary material

10530_2015_956_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1637 kb)


  1. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141CrossRefPubMedGoogle Scholar
  2. Ainouche M, Schierenbeck K (2006) The role of evolutionary genetics in studies of plant invasions. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Berlin, pp 193–221Google Scholar
  3. Ainouche ML, Baumel A, Salmon A (2004) Spartina anglica C. E. Hubbard, a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484CrossRefGoogle Scholar
  4. Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion, lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173CrossRefGoogle Scholar
  5. Ainouche M, Chelaifa J, Ferreira S, Bellot A, Ainouche A, Salmon A (2012) Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes. In: Soltis DE, Soltis PS (eds) Polyploidy and genome evolution. Springer, Berlin, pp 225–243CrossRefGoogle Scholar
  6. Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867CrossRefPubMedGoogle Scholar
  7. Ayres DR, Grotkopp E, Zaremba K et al (2008) Hybridization between invasive Spartina densiflora (Poaceae) and native S. foliosa in San Francisco Bay, California, USA. Am J Bot 95:713–719CrossRefPubMedGoogle Scholar
  8. Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701CrossRefPubMedGoogle Scholar
  9. Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Mol Biol Evol 19:1218–1227CrossRefPubMedGoogle Scholar
  10. Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France, Spartina × neyrautii re-examined. Plant Syst Evol 237:87–97CrossRefGoogle Scholar
  11. Bennett MD, Leitch IJ (2012) Angiosperm DNA C-values database. (Release 8.0). Accessed December 2012
  12. Boston KG (1981) The introduction of Spartina townsendii (S.L) to Australia. Melbourne State College Occasional Papers vol 6, pp 1–57Google Scholar
  13. Charman K (1990) The current status of Spartina anglica in Britain. In: Gray AJ, Benham PEM (eds) Spartina anglica, a research review. Institute of Terrestrial Ecology Research Publication, vol 2. HMSO, London, pp 11–14Google Scholar
  14. Chelaifa H, Monnier A, Ainouche M (2010) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174CrossRefPubMedGoogle Scholar
  15. Chen ZJ, Yu HH (2013) Genetic and epigenetic mechanisms for polyploidy and hybridity. In: Chen ZJ, Birchler JA (eds) Polyploid and hybrid genomics. Chapter 21. Wiley-Blackwell, New York, pp 335–354Google Scholar
  16. Dobesova E, Malinska H, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2015) Silenced rRNA gene homeologs are activated and substitute for partially eliminated active homoelogs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity 114:356–365CrossRefPubMedGoogle Scholar
  17. Ferris C, King RA, Gray AJ (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica. Mol Ecol 6:185–187CrossRefGoogle Scholar
  18. Goodman PJ, Williams WT (1961) Investigations into dieback in Spartina × townsendii agg. 3. Physiological correlates of dieback. J Ecol 49:391–398CrossRefGoogle Scholar
  19. Goodman PJ, Braybrooks EM, Marchant CJ, Lambert JM (1969) Spartina × townsendii H. & J. Groves sensu lato. (Biological flora of the British Isles.). J Ecol 57:298–313CrossRefGoogle Scholar
  20. Gray AJ, Pearson JM (1984) Spartina marshes in Poole Harbour, Dorset, with particular reference to Holes Bay. In: Doody JP (ed) Spartina anglica in Great Britain (Focus on nature conservation no. 5). Nature Conservancy Council, Attingham, pp 11–14Google Scholar
  21. Gray AJ, Benham PEM, Raybould AF (1990) Spartina anglica—the evolutionary and historical background. In: Gray AJ, Benham PEM (eds) Spartina anglica—a research review. London: Institute of Terrestrial Ecology. Natural Environment Research Council, pp 5–10Google Scholar
  22. Gray AJ, Marshall DF, Raybould AF (1991) A century of evolution in Spartina anglica. Adv Ecol Res 21:1–62CrossRefGoogle Scholar
  23. Groves H, Groves J (1880) Reports of the botanical society and exchange club of the British isles. Great Britain 1:37Google Scholar
  24. Guénégou MC, Citharel J, Levasseur JE (1988) The hybrid status of Spartina anglica (Poaceae). Enzymatic analysis of the species and the presumed parents. Can J Bot 66:1830–1833Google Scholar
  25. Guo X, Han F (2014) Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell 26:4311–4327CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hanson L, Boyd A, Johnson MAT, Bennett MD (2005) First nuclear DNA C-values for 18 eudicot families. Ann Bot 96:1315–1320CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hubbard JCE (1957) Report on the British ecological society symposium on Spartina. J Ecol 57:612–616Google Scholar
  28. Hubbard JCE (1965) Spartina marshes in southern England. VI. Pattern of invasion in Poole Harbour. J Ecol 53:799–813CrossRefGoogle Scholar
  29. Hubbard JCE (1968) Grasses, 2nd edn. Penguin Books, LondonGoogle Scholar
  30. Hubbard JCE, Stebbing RE (1968) Spartina marshes in Southern England. VII. Stratigraphy of Keysworth Marsh Poole Harbour. J Ecol 56:707–722CrossRefGoogle Scholar
  31. Husband BC (2004) The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc 82:537–546CrossRefGoogle Scholar
  32. Huskins CL (1931) The origin of Spartina townsendii. Genetica 12:531–538CrossRefGoogle Scholar
  33. Jovet P (1941) Notes systematiques et ecologiques sur les Spartines du Sud-Quest. Bulletin de la Société Botanique de France 88:115–123CrossRefGoogle Scholar
  34. Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944CrossRefPubMedPubMedCentralGoogle Scholar
  35. Książczyk T, Taciak M, Zwierzykowski Z (2010) Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 51:449–460CrossRefPubMedGoogle Scholar
  36. Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chèvre A-M (2011) Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural form of a polyploid species Brassica napus. Chromosoma 20:557–571CrossRefGoogle Scholar
  37. Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP, Leitch AR (2000) Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, active gene units. Chromosoma 109:161–172CrossRefPubMedGoogle Scholar
  38. Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lowe AJ, Abbott RJ (1996) Origins of the new allopolyploid species Senecio cambrensis (Asteraceae) and its relationship to the Canary Islands endemic Senecio teneriffae. Am J Bot 83:1365–1372CrossRefGoogle Scholar
  40. Mable BK (2013) Polyploids and hybrids in changing environments: winners or losers in the struggle for adaptation? Heredity 110:95–96CrossRefPubMedPubMedCentralGoogle Scholar
  41. Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mandak B, Pysek P, Bimova K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64Google Scholar
  43. Marchant CJ (1963) Corrected chromosome numbers for Spartina × townsendii and its parent species. Nature 199:929CrossRefGoogle Scholar
  44. Marchant CJ (1967) Evolution in Spartina (Gramineae). I. The history and morphology of the genus in Britain. J Linn Soc Bot 60:1–24CrossRefGoogle Scholar
  45. Marchant CJ (1968a) Evolution in Spartina (Gramineae). II. Chromosomes, basic relationships and the problem of S. × townsendii agg. J Linn Soc Bot 60:381–409CrossRefGoogle Scholar
  46. Marchant CJ (1968b) Evolution in Spartina (Gramineae), III. Species chromosome numbers and their taxonomic significance. J Linn Soc Bot 60:411–417CrossRefGoogle Scholar
  47. Marchant CJ (1977) Hybrid characteristics in Spartina × neyrautii four taxon rediscovered in Northern Spain. J Linn Soc Bot 74:289–296CrossRefGoogle Scholar
  48. Marchant CJ, Goodman PJ (1969) Spartina alterniflora Loisel. Biological Flora of the British Isles. J Ecol 57:291–295CrossRefGoogle Scholar
  49. Nehring S, Adsersen H (2006) NOBANIS—invasive alien species fact sheet—Spartina anglica. From: online database of the European network on invasive alien species—NOBANIS Accessed 01 June 2015
  50. Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217CrossRefPubMedPubMedCentralGoogle Scholar
  51. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015CrossRefPubMedGoogle Scholar
  52. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45CrossRefPubMedGoogle Scholar
  53. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rauscher JT, Doyle JJ, Brown AHD (2002) Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex. Mol Ecol 11:2691–2702CrossRefPubMedGoogle Scholar
  55. Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991) The evolution of Spartina anglica Hubbard, C.E. (Gramineae)—genetic-variation and status of the parental species in Britain. Biol J Linn Soc 44:369–380CrossRefGoogle Scholar
  56. Raybould AF, Gray AJ, Hornby DD (2000) Evolution and current status of the salt marsh grass, Spartina anglica, in the Solent. In: Collins M, Ansell K (eds) Solent science: a review. Elsevier, Amsterdam, pp 299–302Google Scholar
  57. Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot 105:527–533CrossRefPubMedPubMedCentralGoogle Scholar
  58. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175CrossRefPubMedGoogle Scholar
  59. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefPubMedGoogle Scholar
  60. Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard 72:824–832CrossRefGoogle Scholar
  61. Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of Spartina. In: Futuyma DJ (ed) Annual review of ecology, evolution, and systematics, vol 44. Ann Rev, Palo Alto, pp 389–410Google Scholar
  62. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45CrossRefGoogle Scholar
  63. Thompson JD, McNeilly T, Gray AJ (1991) Population variation in Spartina anglica Hubbard C.E. 1. Evidence from a common garden experiment. New Phytol 117:115–128CrossRefGoogle Scholar
  64. Townsend F (1883) Flora of hampshire. Reeve, London, pp 400–401Google Scholar
  65. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yannic G, Baumel A, Ainouche M (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity 93:182–188CrossRefPubMedGoogle Scholar
  67. Zhi YB, Li HL, An SQ, Zhao L, Zhou CF, Deng ZF (2007) Inter-specific competition: Spartina alterniflora is replacing Spartina anglica in coastal China. Estuar Coast Shelf Sci 74:437–448CrossRefGoogle Scholar
  68. Zozomova-Lihova J, Mandakova T, Kovarikova A, Mühlhausen A, Mummenhoff K, Lysak MA, Kovarik A (2014) When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid. New Phytol 203:1096–1108CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dalibor Huska
    • 1
  • Ilia J. Leitch
    • 2
  • Julie Ferreira de Carvalho
    • 3
  • Andrew R. Leitch
    • 4
  • Armel Salmon
    • 3
  • Malika Ainouche
    • 3
  • Ales Kovarik
    • 1
    Email author
  1. 1.Institute of BiophysicsCzech Academy of Sciences, v.v.i.BrnoCzech Republic
  2. 2.Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondUK
  3. 3.UMR 6553 ECobio Université de Rennes 1RennesFrance
  4. 4.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations