Mitigating the potential for invasive spread of the exotic biofuel crop, Miscanthus × giganteus

Abstract

Although herbaceous perennial crops are becoming a larger component of bioenergy production both in the United States and worldwide, there is growing concern that these crops pose a substantial risk of biological invasion. Miscanthus × giganteus, a sterile hybrid native to Asia, is considered an ideal biofuel crop for lands that are poorly suited for annual food crops and is currently being tested by growers. A fertile variety of M. × giganteus was developed by seed and energy companies in an effort to decrease the costs associated with planting rhizomes. No regulations have been established to manage the risk of invasion by the fertile variety. Because bioenergy production is expanding rapidly, and the few studies to quantify invasion risks in this species have addressed small spatial scales, we used a modeling approach to explore a broader domain of invasion scenarios at landscape scales. We implemented a spatially-explicit population model of fertile M. × giganteus to determine the efficacy of proposed management strategies in limiting or slowing the spread of this species. We found that fertile M. × giganteus may spread rapidly outside of field margins, and the ability of localized management strategies to curtail spread was highly sensitive to M. × giganteus first year survival and the amount of suitable habitat within the larger landscape. Commercialization of novel “bioeconomy crops”, such as fertile M. × giganteus, could increase both production and resource conservation in agriculture; however, these crops may also produce ecosystem “disservices” such as biological invasion and accompanying risks to native species. Landscape-scale modeling that allows for rapid testing of the interactions between new crop genotypes and landscape configurations will be a powerful tool for exploring the ecological risks posed by new bioeconomy crops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson NO, Galatowitsch SM, Gomez N (2006) Selection strategies to reduce invasive potential in introduced plants. Euphytica 148:203–216. doi:10.1007/s10681-006-5951-7

    Article  Google Scholar 

  2. Anderson EK, Maughan M, Oladeinde A et al (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2:167–183

    CAS  Article  Google Scholar 

  3. Anderson EK, Lee D, Allen DJ, Voigt TB (2014) Agronomic factors in the establishment of tetraploid seeded Miscanthus × giganteus. GCB Bioenergy. doi:10.1111/gcbb.12192

    Google Scholar 

  4. Andrew ME, Ustin SL (2010) The effects of temporally variable dispersal and landscape structure on invasive species spread. Ecol Appl 20:593–608

    Article  PubMed  Google Scholar 

  5. Barney JN, Ditomaso JM (2008) Nonnative species and bioenergy: Are we cultivating the next invader? Bioscience 58:64. doi:10.1641/B580111

    Article  Google Scholar 

  6. Barney JN, Mann JJ, Kyser GB, DiTomaso JM (2012) Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus × giganteus in California. Biomass Bioenergy 40:143–154. doi:10.1016/j.biombioe.2012.02.013

    Article  Google Scholar 

  7. BCAP: Biomass Crop Assistance Program: Energy feedstocks from farmers and foresters (2013) U.S. Department of Agriculture, Farm Service Agency

  8. Bonin CL, Heaton EA, Barb J (2014) Miscanthus sacchariflorus–biofuel parent or new weed? GCB Bioenergy 6:629–636. doi:10.1111/gcbb.12098

    Article  Google Scholar 

  9. Brancourt-Hulmel M, Demay C, Rosiau E et al (2014) Miscanthus genetics and agronomy for bioenergy feedstock. In: Karlen DL (ed) Cellulosic energy cropping systems, 1st edn. Wiley, New York

    Google Scholar 

  10. Clifton-brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Change Biol 10:509–518. doi:10.1111/j.1529-8817.2003.00749.x

    Article  Google Scholar 

  11. Cousens R, Dytham C, Law R (2008) Dispersal in plants: a population perspective. Wiley, Oxford

    Google Scholar 

  12. Dale BE, Anderson JE, Brown RC et al (2014) Take a closer look: biofuels can support environmental, economic, and social goals. Environ Sci Technol 48:7200–7203. doi:10.1021/es5025433

    CAS  Article  PubMed  Google Scholar 

  13. Davis AS, Cousens RD, Hill J et al (2010) Screening bioenergy feedstock crops to mitigate invasion risk. Front Ecol Environ 8:533–539. doi:10.1890/090030

    Article  Google Scholar 

  14. Ditomaso JM, Reaser JK, Dionigi CP et al (2010) Biofuel versus bioinvasion: seeding policy priorities. Environ Sci Technol 44:6906–6910. doi:10.1021/es100640y

    CAS  Article  PubMed  Google Scholar 

  15. Dougherty RF, Quinn LD, Endres AB et al (2014) Natural history survey of the ornamental grass Miscanthus sinensis in the introduced range. Invasive Plant Sci Manag 7:113–120. doi:10.1614/IPSM-D-13-00037.1

    Article  Google Scholar 

  16. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    CAS  Article  PubMed  Google Scholar 

  17. Fletcher CS, Westcott DA (2013) Dispersal and the design of effective management strategies for plant invasions: matching scales for success. Ecol Appl 23:1881–1892

    Article  PubMed  Google Scholar 

  18. Frid L, Hanna D, Korb N et al (2013a) Evaluating alternative weed management strategies for three Montana landscapes. Invasive Plant Sci Manag 6:48–59. doi:10.1614/IPSM-D-11-00054.1

    Article  Google Scholar 

  19. Frid L, Holcombe T, Morisette JT et al (2013b) Using state-and-transition modeling to account for imperfect detection in invasive species management. Invasive Plant Sci Manag 6:36–47. doi:10.1614/IPSM-D-11-00065.1

    Article  Google Scholar 

  20. Gardner RH, Milne BT, Turnei MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landsc Ecol 1:19–28

    Article  Google Scholar 

  21. Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432

    Article  Google Scholar 

  22. Glover JD, Reganold JP, Cox CM (2012) Agricultural: plant perennials to save Africa’s soils. Nature 489:359–361

    CAS  Article  PubMed  Google Scholar 

  23. Hager HA, Sinasac SE, Gedalof Z, Newman JA (2014) Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions. PLoS One 9:e100032. doi:10.1371/journal.pone.0100032

    PubMed Central  Article  PubMed  Google Scholar 

  24. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. doi:10.1111/tpj.12413

    PubMed  Google Scholar 

  25. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014. doi:10.1111/j.1365-2486.2008.01662.x

    Article  Google Scholar 

  26. Heaton EA, Dohleman FG, Fernando Miguez A, et al. (2010) Miscanthus: A promising biomass crop. Adv Bot Res 56:75–137

    Article  Google Scholar 

  27. Heggenstaller AH, Anex RP, Liebman M et al (2008) Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740–1748

    CAS  Article  Google Scholar 

  28. Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  30. Jungers JM, Fargione JE, Sheaffer CC et al (2013) Energy potential of biomass from conservation Grasslands in Minnesota. Plos One, USA 8

    Google Scholar 

  31. Knight TM, Havens K, Vitt P (2011) Will the use of less fecund cultivars reduce the invasiveness of perennial plants? Bioscience 61:816–822. doi:10.1525/bio.2011.61.10.11

    Article  Google Scholar 

  32. Kot M, Lewis MA, Van Den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  33. Lewis KC, Porter RD (2014) Global approaches to addressing biofuel-related invasive species risks and incorporation into US laws and policies. Ecol Monogr 84:171–201

    Article  Google Scholar 

  34. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  35. Mann JJ, Barney JN, Kyser GB, Di Tomaso JM (2013) Miscanthus × giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. GCB Bioenergy 5:693–700. doi:10.1111/gcbb.12039

    Article  Google Scholar 

  36. Matlaga DP, Davis AS (2013) Minimizing invasive potential of Miscanthus × giganteus grown for bioenergy: identifying demographic thresholds for population growth and spread. J Appl Ecol 50:479–487. doi:10.1111/1365-2664.12057

    Article  Google Scholar 

  37. Matlaga DP, Schutte BJ, Davis AS (2012) Age-dependent demographic rates of the bioenergy crop Miscanthus × giganteus in Illinois. Invasive Plant Sci Manag 5:238–248. doi:10.1614/IPSM-D-11-00083.1

    Article  Google Scholar 

  38. Melbourne BA, Hastings A (2009) Highly variable spread rates in replicated biological invasions: fundamental limits to predictability. Science 325:1536–1539. doi:10.1126/science.1176138

    CAS  Article  PubMed  Google Scholar 

  39. Neubert MG, Caswell H (2000) Density-dependent vital rates and their population dynamic consequences. J Math Biol 41:103–121

    CAS  Article  PubMed  Google Scholar 

  40. Nichols VA, Miguez FE, Jarchow ME et al (2014) Comparison of cellulosic ethanol yields from Midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy. BioEnergy Res 7:1550–1560. doi:10.1007/s12155-014-9494-9

    CAS  Article  Google Scholar 

  41. Panetta FD, Cacho OJ (2012) Beyond fecundity control: which weeds are most containable? Estimating feasibility of weed containment. J Appl Ecol 49:311–321. doi:10.1111/j.1365-2664.2011.02105.x

    Article  Google Scholar 

  42. Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conserv Biol 14:64–75

    Article  Google Scholar 

  43. Pichancourt J-B, Chadès I, Firn J et al (2012) Simple rules to contain an invasive species with a complex life cycle and high dispersal capacity: controlling invasive species at different life stages. J Appl Ecol 49:52–62. doi:10.1111/j.1365-2664.2011.02093.x

    Article  Google Scholar 

  44. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  45. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  46. Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. Glob Change Biol Bioenergy 2:310–320

    Article  Google Scholar 

  47. Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical evidence of long-distance dispersal in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Sci Manag 4:142–150. doi:10.1614/IPSM-D-10-00067.1

    Article  Google Scholar 

  48. Quinn LD, Stewart JR, Yamanda T et al (2012) Environmental tolerances of Miscanthus sinensis in invasive and native populations. BioEnergy Res 5:139–148. doi:10.1007/s12155-011-9163-1

    Article  Google Scholar 

  49. Quinn LD, Scott EC, Endres AB et al (2014) Resolving regulatory uncertainty: legislative language for potentially invasive bioenergy feedstocks. GCB Bioenergy. doi:10.1111/gcbb.12216

    Google Scholar 

  50. Raghu S, Anderson RC, Daehler CC et al (2006) Adding biofuels to the invasive species fire? Science 313:1742

    CAS  Article  PubMed  Google Scholar 

  51. Raghu S, Spencer J, Davis A, Wiedenmann R (2011) Ecological considerations in the sustainable development of terrestrial biofuel crops. Curr Opin Environ Sustain 3:15–23. doi:10.1016/j.cosust.2010.11.005

    Article  Google Scholar 

  52. Richardson DM (2013) Lessons learned: how can we manage the invasion risk from biofuels? Biofuels 4:455–457. doi:10.4155/bfs.13.35-&gt

    CAS  Article  Google Scholar 

  53. Richardson DM, Blanchard R (2011) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Environ Sustain 3:36–42. doi:10.1016/j.cosust.2010.11.006

    Article  Google Scholar 

  54. Runck B, Kantar M, Jordan N et al (2014) The reflective plant breeding paradigm: a robust system of germplasm development to support sustainable intensification of agroecosystems. Crop Sci. doi:10.2135/cropsci2014.03.0195

    Google Scholar 

  55. Sharov AA, Liebhold AM (1998) Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8:1170–1179

    Article  Google Scholar 

  56. Sheppard AW, Gillespie I, Hirsch M, Begley C (2011) Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain 3:4–10

    Article  Google Scholar 

  57. Smith LL (2014) The thin green line: a framework for evaluating the invasive potential of bioenergy crops. Virginia Tech, Blacksburg, p 175

    Google Scholar 

  58. Smith LL, Barney JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manag 7:93–106. doi:10.1614/IPSM-D-13-00051.1

    Article  Google Scholar 

  59. Smith AL, Klenk N, Wood S et al (2013) Second generation biofuels and bioinvasions: an evaluation of invasive risks and policy responses in the United States and Canada. Renew Sustain Energy Rev 27:30–42. doi:10.1016/j.rser.2013.06.013

    Article  Google Scholar 

  60. Stewart JR, Toma Y, FernáNdez FG et al (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153. doi:10.1111/j.1757-1707.2009.01010.x

    Article  Google Scholar 

  61. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600. doi:10.1126/science.1133306

    CAS  Article  PubMed  Google Scholar 

  62. USDA Farm Service Agency (2015) BCAP Project Areas Listing. http://www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap-pjt-bloc. Accessed 17 Feb 2015

  63. Verburg PH, Mertz O, Erb K-H et al (2013) Land system change and food security: towards multi-scale land system solutions. Curr Opin Environ Sustain 5:494–502. doi:10.1016/j.cosust.2013.07.003

    PubMed Central  Article  PubMed  Google Scholar 

  64. West NM, Matlaga DP, Davis AS (2014a) Quantifying targets to manage invasion risk: light gradients dominate the early regeneration niche of naturalized and pre-commercial Miscanthus populations. Biol Invasions 16:1991–2001

    Article  Google Scholar 

  65. West NM, Matlaga DP, Davis AS (2014b) Managing spread from rhizome fragments is key to reducing invasiveness in Miscanthus × giganteus. Invasive Plant Sci Manag 7:517–525

    Article  Google Scholar 

  66. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  67. With KA, King AW (1999a) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Article  Google Scholar 

  68. With KA, King AW (1999b) Dispersal success on fractal landscapes: a consequence of lacunarity thresholds. Landsc Ecol 14:73–82

    Article  Google Scholar 

  69. With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169

    Article  Google Scholar 

  70. With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353

    Article  Google Scholar 

  71. Yu CY, Kim HS, Rayburn AL et al (2009) Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. Glob Change Biol Bioenergy 1:404–412

    Article  Google Scholar 

  72. Zhuang Q, Qin Z, Chen M (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ Res Lett 8:015020. doi:10.1088/1748-9326/8/1/015020

    Article  Google Scholar 

Download references

Acknowledgments

We thank our funding sources: United States Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA), Agriculture and Food Research Initiative (AFRI) Project 2011-04268 and USDA-ARS. We are grateful to the University of Minnesota Supercomputing Institute for partial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shannon E. Pittman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pittman, S.E., Muthukrishnan, R., West, N.M. et al. Mitigating the potential for invasive spread of the exotic biofuel crop, Miscanthus × giganteus . Biol Invasions 17, 3247–3261 (2015). https://doi.org/10.1007/s10530-015-0950-z

Download citation

Keywords

  • Bioenergy
  • Buffer zones
  • Integrodifference equation
  • Landscape configuration