Advertisement

Biological Invasions

, Volume 17, Issue 8, pp 2491–2503 | Cite as

Different behavioural strategies among seven highly invasive ant species

  • Cleo Bertelsmeier
  • Amaury Avril
  • Olivier Blight
  • Amandine Confais
  • Lise Diez
  • Hervé Jourdan
  • Jérôme Orivel
  • Noémie Saint Germès
  • Franck Courchamp
Original Paper

Abstract

Ants figure prominently among the worst invasive species because of their enormous ecological and economic impacts. However, it remains to be investigated which species would be behaviourally dominant when confronted with another invasive ant species, should two species be introduced in the same area. In the future, many regions might have suitable environmental conditions for several invasive ant species, as predicted under climate change scenarios. Here, we explored interactions among several highly invasive ant species, which have been shown to have overlapping suitable areas. The aim of this study was to evaluate the performance in interference competition of seven of the world’s worst invasive ant species (Anoplolepis gracilipes, Paratrechina longicornis, Myrmica rubra, Linepithema humile, Lasius neglectus, Wasmannia auropunctata and Pheidole megacephala). We conducted pairwise confrontations, testing the behaviour of each species against each of the six other species (in total 21 dyadic confrontations). We used single worker confrontations and group interactions of 10 versus 10 individuals to establish a dominance hierarchy among these invasive ant species. We discovered two different behavioural strategies among these invasive ants: three species displayed evasive or indifferent behaviour when individuals or groups were confronted (A. gracilipes, Pa. longicornis, M. rubra), while the four remaining species were highly aggressive during encounters and formed a linear dominance hierarchy. These findings contrast with the widespread view that invasive ants form a homogeneous group of species displaying the ‘invasive syndrome’, which includes generally aggressive behaviour. The dominance hierarchy among the four aggressive species may be used to predict the outcome of future competitive interactions under some circumstances. Yet, the existence of several behavioural strategies renders such a prediction less straightforward.

Keywords

Invasive ants Dominance hierarchy Dominance trade-offs Dyadic confrontations Interference competition Invasive syndrome 

Notes

Acknowledgments

We would like to thank Phil Lester and two anonymous referees for their comments und suggestions on the manuscript, Jessica Purcell for language editing, Gloria Luque, Camille Leclerc, Cyrian Courchamp for their help in the lab, Sébastien Ollier for help with the statistical analyses. This paper was supported by Région Ile-de-France (03-2010/GV-DIM ASTREA), Agence Nationale de la Recherche (ANR, 2009 PEXT 010 01) and BiodivERsa Eranet grants. L.D. is funded by the FRIA (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture) and a Newton International Fellowship. This work has also benefited from an Investissement d’Avenir grant managed by the Agence Nationale de la Recherche (CEBA, ANR-10-LABX-25-01).

Supplementary material

10530_2015_892_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 81 kb)

References

  1. Abril S, Gomez CG (2011) Aggressive behaviour of the two European Argentine ant supercolonies (Hymenoptera: Formicidae) towards displaced native ant species of the northeastern Iberian Peninsula. Myrmecol News 14:99–106Google Scholar
  2. Adler F, LeBrun E, Feener D Jr (2007) Maintaining diversity in an ant community : modeling, extending, and testing the dominance-discovery trade-off. Am Nat 169:323–333PubMedCrossRefGoogle Scholar
  3. Arnan X, Cerdá X, Retana J (2012) Distinctive life traits and distribution along environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia 170:489–500PubMedCrossRefGoogle Scholar
  4. Bacon SJ, Aebi A, Calanca P, Bacher S (2014) Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers Distrib 20:84–94CrossRefGoogle Scholar
  5. Bang A, Deshpande S, Sumana A, Gadagkar R (2010) Choosing an appropriate index to construct dominance hierarchies in animal societies: a comparison of three indices. Anim Behav 79:631–636CrossRefGoogle Scholar
  6. Barbieri RF, Grangier J, Lester PJ (2015) Synergistic effects of temperature, diet and colony size on the competitive ability of two ant species. Austral Ecol 40:90–99CrossRefGoogle Scholar
  7. Bertelsmeier C, Luque GM, Courchamp F (2013a) Increase in quantity and quality of suitable areas for invasive species as climate changes. Conserv Biol 27:1458–1467PubMedCrossRefGoogle Scholar
  8. Bertelsmeier C, Luque GM, Courchamp F (2013b) Global warming may freeze the invasion of big-headed ants. Biol Invasions 15:1561–1572CrossRefGoogle Scholar
  9. Bertelsmeier C, Luque GM, Hoffmann BD, Courchamp F (2015) Worldwide ant invasions under climate change. Biodivers Conserv 24:117–128CrossRefGoogle Scholar
  10. Bestelmeyer BT (2000) The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. J Anim Ecol 69:998–1009CrossRefGoogle Scholar
  11. Blackburn TM, Cassey P, Lockwood J (2009) The role of species traits in the establishment success of exotic birds. Glob Change Biol 15:2852–2860CrossRefGoogle Scholar
  12. Blight O, Provost E, Renucci M et al (2010) A native ant armed to limit the spread of the Argentine ant. Biol Invasions 12:3785–3793CrossRefGoogle Scholar
  13. Buczkowski G, Bennett GW (2008a) Aggressive interactions between the introduced Argentine ant, Linepithema humile and the native odorous house ant, Tapinoma sessile. Biol Invasions 10:1001–1010CrossRefGoogle Scholar
  14. Buczkowski G, Bennett GW (2008b) Detrimental effects of highly efficient interference competition: invasive argentine ants outcompete native ants at toxic baits. Environ Entomol 37:741–747PubMedCrossRefGoogle Scholar
  15. Carpintero S, Reyes-López J (2008) The role of competitive dominance in the invasive ability of the Argentine ant (Linepithema humile). Biol Invasions 10:25–35CrossRefGoogle Scholar
  16. Cerdá X, Retana J, Cros S (1997) Thermal disruption of transitive hierarchies in Mediterranean ant communities. J Anim Ecol 66:363–374Google Scholar
  17. Cerdá X, Retana J, Manzaneda A (1998) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412CrossRefGoogle Scholar
  18. Cerdá X, Angulo E, Caut S, Courchamp F (2012) Ant community structure on a small Pacific island: only one native species living with the invaders. Biol Invasions 14:323–339CrossRefGoogle Scholar
  19. Cerdá X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol News 18:131–147Google Scholar
  20. Chazeau J, Potiaroa T, Bonnet de Larbogne L, Konghouleux J, Jourdan H (2000) La “fourmi électrique” Wasmannia auropunctata (Roger) en Nouvelle-Calédonie: expression de l’invasion, moyens d’une maîtrise de la nuisance en milieu agricole, praticabilité d’une préservation des milieux naturels. Convention Territoire de Nouvelle-Calédonie/IRD/1999. Conventions Sciences de la Vie, Zoologie Appliquée, IRD Nouméa, vol 10, pp 63Google Scholar
  21. Dejean A, Moreau CS, Kenne M, Leponce M (2008) The raiding success of Pheidole megacephala on other ants in both its native and introduced ranges. CR Biol 331:631–635CrossRefGoogle Scholar
  22. Dussutour A, Simpson SJ (2008) Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc 55:329–333CrossRefGoogle Scholar
  23. Errard C, Delabie JHC, Jourdan H, Hefetz A (2005) Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Hymenoptera: Formicidae) a key to the invasive success of a tramp species. Naturwissenschaften 92:319–323PubMedCrossRefGoogle Scholar
  24. Essl F, Dullinger S, Rabitsch W et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207PubMedCentralPubMedCrossRefGoogle Scholar
  25. Fellers J (1987) Interference and exploitation in a guild of woodland ants. Ecology 68:1466–1478CrossRefGoogle Scholar
  26. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33CrossRefGoogle Scholar
  27. Fluker S, Beardsley J (1970) Sympatric associations of three ants: Iridomyrmex humilis, Pheidole megacephala and Anoplolepis longipes in Hawaii. Ann Entomol Soc Am 63:1290–1296CrossRefGoogle Scholar
  28. Foucaud J, Orivel J, Fournier D et al (2009) Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Mol Ecol 18:5059–5073PubMedCrossRefGoogle Scholar
  29. Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210:732–739PubMedCrossRefGoogle Scholar
  30. Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212CrossRefGoogle Scholar
  31. Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251CrossRefGoogle Scholar
  32. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  33. Human KG, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, I.inepithema humile, and native ant species. Oecologia 105:405–412CrossRefGoogle Scholar
  34. IUCN SSC Invasive Species Specialist Group (2012) Global invasive species database. www.issg.org/database. Accessed 24 Jan 2014
  35. Kabashima J, Greenberg L, Rust M, Paine T (2007) Aggressive interactions between Solenopsis invicta and Linepithema humile (Hymenoptera: Formicidae) under laboratory conditions. J Econ Entomol 100:148–154PubMedCrossRefGoogle Scholar
  36. Kirschenbaum R, Grace JK (2008) Agonistic responses of the tramp ants Anoplolepis gracilipes, Pheidole megacephala, Linepithema humile, and Wasmannia auropunctata (Hymenoptera : Formicidae). Sociobiology 51:673–683Google Scholar
  37. Krushelnycky PD, Gillespie RG (2010) Correlates of vulnerability among arthropod species threatened by invasive ants. Biodivers Conserv 19:1971–1988CrossRefGoogle Scholar
  38. Lach L, Hooper-Bui LM (2010) Consequences of Ant Invasions. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecol. Oxford University Press, Oxford, pp 261–286Google Scholar
  39. Le Breton J (2003) Etude des interactions entre la fourmi Wasmannia auropunctata et la myrmécofaune: comparaison d’une situation en zone d’introduction: la Nouvelle-Calédonie et d’une situation en zone d’origine: la Guyane Française. Thèse de doctorat, Université Paul Sabatier, Toulouse 3; IRD, 233 pGoogle Scholar
  40. Le Breton J, Orivel J, Chazeau J, Dejean A (2007) Unadapted behaviour of native, dominant ant species during the colonization of an aggressive, invasive ant. Ecol Res 22:107–114CrossRefGoogle Scholar
  41. LeBrun EG, Tillberg CV, Suarez AV et al (2007) An experimental study of competition between fire ants and Argentine ants in their native range. Ecology 88:63–75PubMedCrossRefGoogle Scholar
  42. Lessard J-PP, Dunn RR, Sanders NJ (2009) Temperature-mediated coexistence in temperate forest ant communities. Insectes Soc 56:149–156CrossRefGoogle Scholar
  43. Lester PJ, Abbott KL, Sarty M, Burns K (2009) Competitive assembly of South Pacific invasive ant communities. BMC Ecol 9:3PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lester PJ, Stringer LD, Haywood J (2010) The role of resource dispersion in promoting the co-occurrence of dominant and subordinate ant species. Oikos 119:659–668CrossRefGoogle Scholar
  45. Lieberburg I, Kranz P, Seip A (1975) Bermudian ants revisited: the status and interaction of Pheidole Megacephala and Iridomyrmex Humilis. Ecology 56:473–478CrossRefGoogle Scholar
  46. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world's worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland, p 12Google Scholar
  47. Miravete V, Roura-Pascual N, Dunn RR, Gomez C (2014) How many and which ant species are being accidentally moved around the world? Biol Lett 10:20140518PubMedCrossRefGoogle Scholar
  48. Parr C, Gibb H (2012) The discovery-dominance trade-off is the exception rather than the rule. J Anim Ecol 81:233–241PubMedCrossRefGoogle Scholar
  49. Passera L (1994) Characteristics of tramp species. In: Williams D (ed) exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, CO, pp 23–43Google Scholar
  50. Philibert A, Desprez-Loustau M-L, Fabre B et al (2011) Predicting invasion success of forest pathogenic fungi from species traits. J Appl Ecol 48:1381–1390CrossRefGoogle Scholar
  51. Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  52. Rabitsch W (2011) The hitchhiker’s guide to alien ant invasions. Biocontrol 56:551–572CrossRefGoogle Scholar
  53. Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invasions 11:1017–1031CrossRefGoogle Scholar
  54. Rowles AD, O’Dowd DJ (2007) Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biol Invasions 9:73–85. doi: 10.1007/s10530-006-9009-5 CrossRefGoogle Scholar
  55. Sagata K, Lester PJ (2009) Behavioural plasticity associated with propagule size, resources, and the invasion success of the Argentine ant, Linepithema humile. J Appl Ecol 46:19–27CrossRefGoogle Scholar
  56. Santini G, Tucci L, Ottonetti L, Frizzi F (2007) Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol Entomol 32:319–326CrossRefGoogle Scholar
  57. Sarty M, Abbott KL, Lester PJ (2006) Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149:465–473PubMedCrossRefGoogle Scholar
  58. Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66PubMedCrossRefGoogle Scholar
  59. Spicer Rice ES, Silverman J (2013a) Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLoS One 8:e56281PubMedCrossRefGoogle Scholar
  60. Spicer Rice ES, Silverman J (2013b) Submissive behaviour and habituation facilitate entry into habitat occupied by an invasive ant. Anim Behav 86:497–506CrossRefGoogle Scholar
  61. Suarez AV, McGlynn TP, Tsuitsui ND (2010) Biogeographic and taxonomic patterns of introduced ants. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecol. Oxford University Press, New York, pp 233–244Google Scholar
  62. Tanner CJ, Adler FR (2009) To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim Behav 77:297–305CrossRefGoogle Scholar
  63. Thomas ML, Holway DA (2005) Condition-specific competition between invasive Argentine ants and Australian Iridomyrmex. J Anim Ecol 74:532–542CrossRefGoogle Scholar
  64. Wittman SE (2014) Impacts of invasive ants on native ant communities (Hymenoptera: Formicidae). Mymecol News 19:111–123Google Scholar
  65. Wittman SE, Sanders NJ, Ellison AM et al (2010) Species interactions and thermal constraints on ant community structure. Oikos 119:551–559CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cleo Bertelsmeier
    • 1
  • Amaury Avril
    • 1
  • Olivier Blight
    • 2
  • Amandine Confais
    • 1
  • Lise Diez
    • 3
  • Hervé Jourdan
    • 4
  • Jérôme Orivel
    • 5
  • Noémie Saint Germès
    • 1
  • Franck Courchamp
    • 1
  1. 1.Laboratoire Ecologie, Systématique & Evolution (ESE), UMR CNRS 8079Univ. Paris SudOrsayFrance
  2. 2.Estación Biológica de DoñanaConsejo Superior de Investigaciones CientíficasSevilleSpain
  3. 3.Unité d’Ecologie SocialeUniv. Libre de BruxellesBrusselsBelgium
  4. 4.UMR CNRS - IRD - UAPV, Centre IRD Nouméa, Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE)Aix-Marseille UniversitéNouméa CedexNew Caledonia
  5. 5.CNRS, UMR Ecologie des forêts de Guyane, AgroParisTech, CIRAD, INRAUniv. De Guyane, Univ. Des AntillesKourou CedexFrance

Personalised recommendations