Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe

Abstract

The yellow-legged hornet, Vespa velutina, was accidentally introduced from Southeast Asia and then invaded France and Korea over the last 10 years. Since its introduction, its predation on honeybee colonies has rapidly become an economic problem in invaded countries. Using mitochondrial cytochrome C oxidase and 22 nuclear microsatellite loci, we showed that native hornet populations were well differentiated and highly diverse. In contrast, introduced populations from France and Korea suffered a genetic bottleneck, which did not prevent their rapid geographic expansion. Analysis of the genetic data indicates that French and Korean populations likely arose from two independent introduction events. The most probable source population is from an area between the Chinese provinces of Zhejiang and Jiangsu. This invasion route is in agreement with knowledge on trade and historical records. By studying colonies of V. velutina, we demonstrated its polyandry, which is very rare among Vespidae. This mating behavior could have favored the success of this Asian hornet in Europe and Korea. Combined, the population and colony results suggest that very few or possibly only one single multi-mated female gave rise to the invasion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrol DP (1994) Ecology, behaviour and management of social wasp, Vespa velutina Smith (Hymenoptera: Vespidae), attacking honeybee colonies. Korean J Apic 9:5

    Google Scholar 

  2. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  3. Arca M, Capdevielle-Dulac C, Villemant C et al (2011) Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv Genet Resour 2:283–286

    Google Scholar 

  4. Beggs JR, Brockerhoff EG, Corley JC et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Article  Google Scholar 

  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29(4):1165–1188

    Article  Google Scholar 

  6. Carpenter JM, Kojima J (1997) Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). Natural history bulletin of Ibaraki University 1:51–92

    Google Scholar 

  7. Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662

    Article  Google Scholar 

  8. Choi MB, Martin SJ, Lee JW (2012) Distribution, spread and impact of the invasive hornet Vespa velutina in South Korea. Asia-Pacific Entomol 15:473–477

    Article  Google Scholar 

  9. Choi MB, Lee S-A, Suk HY, Lee JW (2013) Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax. South Korea. Entomol Res 43(4):208–214

    Article  Google Scholar 

  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  PubMed  Article  Google Scholar 

  11. Cornuet JM, Luikart GL (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Cornuet JM, Santos F, Beaumont MA et al (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Crozier R, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Annls Zool Fennici 38:267–285

  14. Daly D, Archer ME, Watts PC et al (2002) Polymorphic microsatellite loci for eusocial wasps (Hymenoptera: Vespidae). Mol Ecol Notes 2:273

    CAS  Google Scholar 

  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431

    CAS  PubMed  Article  Google Scholar 

  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  17. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 5:294–299

    Google Scholar 

  19. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392:441–442

    CAS  Article  Google Scholar 

  20. Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Moyers BT, Renaut S, Rennison DJ, Veen T, Vines TH (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol Ecol 21:4925–4930

    PubMed  Article  Google Scholar 

  21. Guillemaud T, Ciosi M, Lombaert E, Estoup A (2011) Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. C R Biol 33:237–246

    Article  Google Scholar 

  22. Hajibabaei M, deWaard JR, Ivanova NV et al (2005) Critical factors for assembling a high volume of DNA barcodes. Philos Trans R Soc Lond B Biol Sci 360:1959–1967

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  24. Hasegawa E, Takahashi J (2002) Microsatellite loci for genetic research in the hornet Vespa mandarinia and related species. Mol Ecol Notes 2:306

    CAS  Article  Google Scholar 

  25. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Evol Syst 33:181–233

    Article  Google Scholar 

  26. Hughes WOH, Ratnieks FLW, Oldroyd BP (2008) Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J EvolutionBiol 21:1090–1095

    CAS  Google Scholar 

  27. Ings TC, Ward NL, Chittka L (2006) Can commercially imported bumble bees out-compete their native conspecifics? J Appl Ecol 43:940–948

    Article  Google Scholar 

  28. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801

    CAS  PubMed  Article  Google Scholar 

  29. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc 75:21–64

    CAS  PubMed  Article  Google Scholar 

  30. Ken T, Hepburn HR, Radloff SE et al (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495

    PubMed  Article  Google Scholar 

  31. Luikart G, Allendorf F, Cornuet JM, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238

    CAS  PubMed  Article  Google Scholar 

  32. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Cons Biol 12(1):228–237

  33. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appls 10:689–710

    Article  Google Scholar 

  34. Mikheyev AS (2008) History, genetics and pathology of a leaf-cutting ant introduction: a case study of the Guadeloupe invasion. Biol Invasions 10:467–473

    Article  Google Scholar 

  35. Mikheyev AS, Bresson S, Conant P (2009) Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol Ecol 18:2937–2944

    CAS  PubMed  Article  Google Scholar 

  36. Moller H (1996) Lessons for invasion theory from social insects. Biol Cons 78:125–142

    Article  Google Scholar 

  37. Monceau K, Arca M, Leprêtre L, Mougel F, Bonnard O, Silvain JF, Maher N, Arnold G, Thiéry D (2013) Native prey and invasive predator patterns of foraging activity: the case of the yellow-legged hornet predation at European honeybee hives. PLoS ONE 8(6):e66492

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  39. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    CAS  PubMed  Article  Google Scholar 

  40. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Perrard A, Haxaire J, Rortais A, Villemant C (2009) Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Ann Soc Entomol Fr 45:119–127

    Google Scholar 

  42. Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  43. Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS 2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536

    CAS  PubMed  Article  Google Scholar 

  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Puillandre N, Dupas S, Dangles O et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Article  Google Scholar 

  46. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA (PNAS) 94:9197–9201

    CAS  Article  Google Scholar 

  47. Rasplus JY, Villemant C, Paiva MR, Delvare G, Roques A (2010) Hymenoptera. In: Roques A, Kenis M, Lees D (eds) Arthropod invasions in Europe. BioRisk 4. Pensoft, Sofia, pp 669–776

    Google Scholar 

  48. Rome Q, Dambrine L, Onate C, Muller F, Villemant C, Garcia-Perez L, Maia M, Carvalho Esteves P, Bruneau E (2013) Spread of the invasive hornet Vespa velutina Lepeletier, 1836, in Europe in 2012 (Hym., Vespidae). Bull Soc entomol Fr 118:21–22

    Google Scholar 

  49. Rortais A, Villemant C, Gargominy O, Rome Q, Haxaire J, Papachristoforou A, Arnold G (2010) A new enemy of honeybees in Europe: the Asian hornet Vespa velutina. In: Settele J (ed) Atlas of biodiversity risks—from Europe to the globe, from stories to maps. Pensoft, Sofia

    Google Scholar 

  50. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385  

  51. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8:103–106

    Article  Google Scholar 

  52. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    CAS  PubMed  Article  Google Scholar 

  53. Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc B-Biol Sci 354:507–515

    Article  Google Scholar 

  54. Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422

    CAS  PubMed  Article  Google Scholar 

  55. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360

    PubMed  Article  Google Scholar 

  56. Tan K, Radloff S, Li JJ, Hepburn HR, Yang MX, Zhang LJ, Neumann P (2007) Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera. Naturwissenschaften 94:469–472

    CAS  PubMed  Article  Google Scholar 

  57. Templeton AR, Crandall KA, Sing CF (1992) A cladistics analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data, III. Cladogram estimation. Genetics 132:619–633

    CAS  Google Scholar 

  58. Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58

    Article  Google Scholar 

  59. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161

    CAS  PubMed  Article  Google Scholar 

  60. Villemant C (2008) Apis cerana se défend contre Vespa velutina : observations dans le massif forestier du Bi Doup, Vietnam. Bull Soc entomol Fr 113:312

    Google Scholar 

  61. Villemant C, Haxaire J, Streito JC (2006) Premier bilan de l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bull Soc entomol Fr 111:535

    Google Scholar 

  62. Villemant C, Barbet-Massin M, Perrard A et al (2011) Predicting the invasion risk by the alien bee-hawking yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol Cons 144:2142–2150

    Article  Google Scholar 

  63. Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579–1594

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  64. Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 229–257

  65. Sinauer, Sunderland, MA.    Yasui Y (1998) The “genetic benefits” of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    CAS  PubMed  Article  Google Scholar 

  66. Zayed A, Constantin SA, Packer L (2007) Successful biological invasion despite a severe genetic load. PLoS ONE 2(9):e868

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Daniel Simberloff for his very useful rereading of an earlier version of the manuscript. We thank all the French beekeepers and associations that kindly provided us with Asian yellow-legged hornet samples from France. We also thank our colleagues Alain Roques (INRA, Orléans), Agnès Rortais (CNRS, Gif-sur-Yvette), Pierre Tripotin (MNHN, Paris), Tan Ken (Chinese Academy of Sciences, China), Yayuk Suhardjono and Oscar Effendy (Museum of Bogor, LIPI, Indonesia), and Truong Quang Tam (Institute of Tropical Biology, Vietnam) for help with sample collection from Asia. Cyril Nadeau, Delia Dupré and Ugoline Godeau provided technical help in the laboratory. This study was financially supported by France AgriMer (Programme communautaire pour l’Apiculture, 2008–2011) and IRD and CNRS core budgets. Collecting missions were supported by the MNHN for Vietnam (PPF 2008); Indonesia (ATM Biodiversité 2010), China (ATM Formes 2010). We thank Emmanuelle Baudry (UPSud, Orsay) for fruitful comments on the manuscript. The English was revised by Helen McCombie.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Arca.

Additional information

Data accessibility

DNA sequences: Genbank accessions JQ780449–JQ780462.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arca, M., Mougel, F., Guillemaud, T. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol Invasions 17, 2357–2371 (2015). https://doi.org/10.1007/s10530-015-0880-9

Download citation

Keywords

  • Yellow-legged hornet
  • Vespa velutina
  • Invasive species
  • Approximate Bayesian computation