Skip to main content

Changes in habitat complexity resulting from sequential invasions of a rocky shore: implications for community structure

Abstract

Worldwide, marine rocky shores are being modified by alien species, but their successive impacts are rarely recorded. We documented sequential invasions of Marcus Island on the west coast of South Africa by comparing communities from 1980 (pre-invasion), 2001 (after invasion by the mussel Mytilus galloprovincialis) and 2012 (following invasions by another mussel, Semimytilus algosus, and the barnacle Balanus glandula). Their influence on habitat complexity was measured with a novel technique enabling retrospective calculation of historical complexity. In 1980, habitat complexity, invertebrate abundance and species richness decreased from the low-shore to the high-shore, but homogenised in 2001 after M. galloprovincialis elevated habitat complexity across most of the shore. In 2012, these variables returned to pre-invasion patterns, after M. galloprovincialis declined in the high-shore and was replaced there by B. glandula. With the first mussel invasion, several indigenous species extended up the intertidal, but retreated once M. galloprovincialis receded. Community composition differed significantly among nearly all years and zones, irrespective of whether the alien species were included in the analyses or not. Some once-dominant native species were negatively affected by the invasions: one indigenous mussel, Choromytilus meridionalis, disappeared by 2012, and another, Aulacomya atra, declined. The abundance of recruits of the limpet Scutellastra granularis rose and fell with the arrival and recession of M. galloprovincialis, but adults were adversely affected. Changes to habitat complexity induced by sequential invasions supported hypothesised changes in invertebrate abundance and species richness, but could not alone predict changes in community composition, which were also influenced by zonation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barbarro JMF, Abad MJ (2013) Co-existence of two Mytilid species in a heterogeneous environment: mortality, growth and strength of shell and byssus attachment. Mar Ecol Prog Ser 467:115–128. doi:10.3354/meps10122

    Article  Google Scholar 

  2. Barkai A, Branch GM (1988) Contrasts between the benthic communities of subtidal hard substrata at Marcus and Malgas Islands: a case of alternative stable states? S Afr J Mar Sci 7:117–137

    Article  Google Scholar 

  3. Blender Foundation (2012) Blender 2.64. Retrieved October 13, 2012, from http://www.download.blender.org

  4. Borthagaray AI, Carranza A (2007) Mussels as ecological engineers: their contribution to species richness in a rocky littoral community. Acta Oecol 31:243–250. doi:10.1016/j.actao.2006.10.008

    Article  Google Scholar 

  5. Bownes SJ, McQuaid CD (2006) Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna L. on the south coast of South Africa? J Exp Mar Biol Ecol 338:140–151. doi:10.1016/j.jembe.2006.07.006

    Article  Google Scholar 

  6. Bownes SJ, McQuaid CD (2010) Mechanisms of habitat segregation between an invasive (Mytilus galloprovincialis) and an indigenous (Perna perna) mussel: adult growth and mortality. Mar Biol 157:1799–1810. doi:10.1007/s00227-010-1452-2

    Article  Google Scholar 

  7. Branch GM, Steffani CN (2004) Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamark). J Exp Mar Biol Ecol 300:189–215. doi:10.1016/j.jembe.2003.12.007

    Article  Google Scholar 

  8. Branch GM, Odendaal F, Robinson TB (2008) Long-term monitoring of the arrival, expansion and effects of the alien mussel Mytilus galloprovincialis relative to wave action. Mar Ecol Prog Ser 370:171–183. doi:10.3354/meps07626

    Article  Google Scholar 

  9. Branch GM, Odendaal F, Robinson TB (2010) Competition and facilitation between the alien mussel Mytilus galloprovincialis and indigenous species: moderation by wave action. J Exp Mar Biol Ecol 383:65–78. doi:10.1016/j.jembe.2009.10.007

    Article  Google Scholar 

  10. Bustamante RH, Branch GM, Eekhout S (1997) The influences of physical factors on the distribution and zonation patterns of South African rocky shore communities. S Afr J Mar Sci 18:119–136. doi:10.2989/025776197784160901

    Article  Google Scholar 

  11. Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  12. Commito JA, Boncavage EM (1989) Suspension-feeders and coexisting infauna: an enhancement counterexample. J Exp Mar Biol Ecol 125:33–42

    Article  Google Scholar 

  13. Commito J, Rusignuolo B (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. J Exp Mar Biol Ecol 225:133–152

    Article  Google Scholar 

  14. Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Evol Syst 3:169–192. doi:10.1146/annurev.es.03.110172.001125

    Article  Google Scholar 

  15. Creese R, Hooker S, DeLuca S, Wharton W (1997) Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. N Z J Mar Fresh Res 31:225–236. doi:10.1080/00288330.1997.9516760

    Article  Google Scholar 

  16. Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152

    Article  Google Scholar 

  17. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166. doi:10.1043/j.1600-0706.2002.970201.x

    Article  Google Scholar 

  18. Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75

    Article  Google Scholar 

  19. de Greef K, Griffiths CL, Zeeman Z (2013) Déjà vu? A second mytilid mussel, Semimytilus algosus, invades South Africa’s west coast. Afr J Mar Sci 35:307–313. doi:10.2989/1814232X.2013.829789

    Article  Google Scholar 

  20. Firstater FN, Hidalgo FJ, Lomovasky BJ, Ramos E, Gamero P, Iribarne OO (2011) Habitat structure is more important than nutrient upwelling in modifying mussel bed assemblage in an upwelling area of the Peruvian coast. Helgol Mar Res 65:187–196. doi:10.1007/s10152-010-0214-3

    Article  Google Scholar 

  21. Gestoso I, Arenas F, Rubal M, Veiga P, Peña M, Olabarria C (2013) Shifts from native to non-indigenous mussels: enhanced habitat complexity and its effects on faunal assemblages. Mar Env Res 90:85–95. doi:10.1016/j.marenvres.2013.05.015

    Article  CAS  Google Scholar 

  22. Gotelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  23. Griffiths R (1980) Filtration, respiration and assimilation in the black mussel Choromytilus meridionalis. Mar Ecol Prog Ser 3:63–70

    Article  Google Scholar 

  24. Griffiths CL, Hockey PAR, van Erkom Schurink C, Le Roux PJ (1992) Marine invasive aliens on South African shores: implications for community structure and trophic functioning. S Afr J Mar Sci 12:713–722. doi:10.2989/02577619209504736

    Article  Google Scholar 

  25. Guerra Á, Pascual S, Garci ME, Roura Á, Mucientes G, González ÁF (2013) The black-pygmy mussel Limnoperna securis in Galician Rias (north-eastern Atlantic): new records and first evidence of larval stages predation by copepods. Mar Biodivers Rec 6:1–7. doi:10.1017/S1755267212001224

    Article  Google Scholar 

  26. Hammond W, Griffiths C (2006) Biogeographical patterns in the fauna associated with southern African mussel beds. Afr Zool 41:123–130. doi:10.3377/1562-7020(2006)41[123:BPITFA]2.0.CO;2

  27. Harley CDG (2006) Effects of physical ecosystem engineering and herbivory on intertidal community structure. Mar Ecol Prog Ser 317:29–39. doi:10.3354/meps317029

    Article  Google Scholar 

  28. Harley CDG, O’Riley JL (2011) Non-linear density-dependent effects of an intertidal ecosystem engineer. Oecologia 166:531–541. doi:10.1007/s00442-010-1864-1

    Article  PubMed  Google Scholar 

  29. Hockey PAR, van Erkom Schurink C (1992) The invasive biology of the mussel Mytilus galloprovincialis on the Southern African Coast. Trans R Soc S Afr 48:123–139. doi:10.1080/00359199209520258

    Article  Google Scholar 

  30. Hoffman V, Pfaff MC, Branch GM (2012) Spatio-temporal patterns of larval supply and settlement of intertidal invertebrates reflect a combination of passive transport and larval behaviour. J Exp Mar Biol Ecol 418–419:83–90. doi:10.1016/j.jembe.2012.03.008

    Article  Google Scholar 

  31. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  32. Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17. doi:10.1007/s10750-011-0974-z

    Article  Google Scholar 

  33. Laird MC, Griffiths CL (2008) Present distribution and abundance of the introduced barnacle Balanus glandula Darwin in South Africa. Afr J Mar Sci 30:93–100. doi:10.2989/AJMS.2008.30.1.9.459

    Article  Google Scholar 

  34. McKinney ML (1998) On predicting biotic homogenization: speciesarea patterns in marine biota. Glob Ecol Biogeogr Lett 7:297–301. doi:10.1046/j.1466-822X.1998.00303.x

    Article  Google Scholar 

  35. Mead A, Carlton JT, Griffiths CL, Rius M (2011) Revealing the scale of marine bioinvasions in developing regions: a South Africa assessment. Biol Invasions 13:1991–2008. doi:10.1007/s10530-011-0016-9

    Article  Google Scholar 

  36. Menge BA, Foley MM, Pamplin J, Murphy G, Pennington C (2010) Supply-side ecology, barnacle recruitment, and rocky intertidal community dynamics: do settlement surface and limpet disturbance matter? J Exp Mar Biol Ecol 392:160–175. doi:10.1016/j.jembe.2010.04.032

    Article  Google Scholar 

  37. Norling P, Kautsky N (2008) Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquat Biol 4:89–98. doi:10.3354/ab00096

    Article  Google Scholar 

  38. Pillay D, Branch GM (2011) Bioengineering effects of burrowing thalassinidean shrimps on marine softbottom ecosystems. Oceanogr Mar Biol Ann Rev 49:137–192

    Google Scholar 

  39. Quinn G, Keough M (2002) Comparing groups or treatments—analysis of variance. In: Quinn G, Keough M (eds) Experimental design and data analysis for biologists. Cambridge University Press, New York, pp 173–188

    Chapter  Google Scholar 

  40. Reaugh-Flower K, Branch GM, Harris JM, McQuaid CD, Currie B, Dye A, Robertson B (2011) Scale-dependent patterns and processes of intertidal mussel recruitment around southern Africa. Mar Ecol Prog Ser 434:101–119. doi:10.3354/meps09169

    Article  Google Scholar 

  41. Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54:2596–2608

    Article  Google Scholar 

  42. Risk MJ (1972) Fish diversity on a coral reef in the Virgin Islands. Atoll Res Bull 193:1–6

    Article  Google Scholar 

  43. Robinson TB, Branch GM, Griffiths CL, Govender A, Hockey PAR (2007a) Changes in South African rocky intertidal invertebrate community structure associated with the invasion of the mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 340:163–171. doi:10.3354/meps340163

    Article  Google Scholar 

  44. Robinson TB, Griffiths CL, Branch GM, Govender A (2007b) The invasion and subsequent die-off of Mytilus galloprovincialis in Langebaan Lagoon, South Africa: effects on natural communities. Mar Biol 152:225–232. doi:10.1007/s00227-007-0697-x

    Article  Google Scholar 

  45. Ruiz Sebastián C, Steffani CN, Branch GM (2002) Homing and movement patterns of a South African limpet Scutellastra argenvillei in an area invaded by an alien mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 243:111–122. doi:10.3354/meps243111

    Article  Google Scholar 

  46. Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789. doi:10.1093/icb/42.4.780

    Article  PubMed  Google Scholar 

  47. Steffani CN, Branch GM (2003) Spatial comparisons of populations of an indigenous limpet Scutellastra argenvillei and an alien mussel Mytilus galloprovincialis along a gradient of wave energy. Afr J Mar Sci 25:195–212. doi:10.2989/18142320309504010

    Article  Google Scholar 

  48. Steffani CN, Branch GM (2005) Mechanisms and consequences of competition between an alien mussel, Mytilus galloprovincialis, and an indigenous limpet, Scutellastra argenvillei. J Exp Mar Biol Ecol 317:127–142. doi:10.1016/j.jembe.2004.11.022

    Article  Google Scholar 

  49. Suchanek TH (1985) Mussels and their role in structuring rocky shore communities. In: Moore PG, Seed R (eds) The ecology of rocky coasts. Hodder and Stoughton, Sevenoaks, pp 70–96

    Google Scholar 

  50. Thiel M, Ullrich N (2002) Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30. doi:10.1007/s10152-001-0098-3

    Article  Google Scholar 

  51. Thiesen BF (1972) Shell cleaning and deposit feeding in Mytilus edulis (Bivalvia). Ophelia 10:49–55

    Article  Google Scholar 

  52. Thompson RC, Crowe TP, Hawkins SJ (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191

    Article  Google Scholar 

  53. Tokeshi M (1995) Polychaete abundance and dispersion patterns in mussel beds: a non-trivial ‘infaunal’ assemblage on a pacific South American rocky shore. Mar Ecol Prog Ser 125:137–147. doi:10.3354/meps125137

    Article  Google Scholar 

  54. Tokeshi M, Romero L (1995) Filling a gap: dynamics of space occupancy on a mussel-dominated subtropical rocky shore. Mar Ecol Prog Ser 119:167–176. doi:10.3354/meps119167

    Article  Google Scholar 

  55. Tsuchiya M, Nishihira M (1985) Islands of Mytilus as a habitat for small intertidal animals: effect of island size on community structure 25:71–81

    Google Scholar 

  56. Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4:16–20

    Article  CAS  PubMed  Google Scholar 

  57. Valdivia N, Thiel M (2006) Effects of point-source nutrient addition and mussel removal on epibiotic assemblages in Perumytilus purpuratus beds. J Sea Res 56:271–283. doi:10.1016/j.seares.2006.06.003

    Article  Google Scholar 

  58. van Erkom Schurink C, Griffiths CL (1991) A comparison of reproductive cycles and reproductive output in four southern African mussel species. Mar Ecol Prog Ser 76:123–134

    Article  Google Scholar 

  59. van Erkom Schurink C, Griffiths CL (1993) Factors affecting relative rates of growth in four South African mussel species. Aquaculture 109:257–273

    Article  Google Scholar 

  60. van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bakker JP, Bouma TJ (2007) Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos 116:742–750. doi:10.1111/j.2007.0030-1299.15485.x

    Article  Google Scholar 

  61. Wootton JT (1993) Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. Am Nat 141:71–89

    Article  Google Scholar 

  62. Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape level. Oecologia 132:96–101. doi:10.1007/s00442-002-0929-1

    Article  Google Scholar 

  63. Zardi GI, Nicastro KR, McQuaid CD, Rius M, Porri F (2006) Hydrodynamic stress and habitat partitioning between indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels: constraints of an evolutionary strategy. Mar Biol 150:79–88. doi:10.1007/s00227-006-0328-y

    Article  Google Scholar 

Download references

Acknowledgments

Financial contributions by the DST-NRF Centre of Excellence for Invasion Biology, the Marine Research Institute, University of Cape Town (BASICs Programme) and the Andrew Mellon Foundation are gratefully acknowledged. Brendan Havenga is thanked for his help in the field. Thanks are due to Jennifer Ruesink, Divyalochany Thangavel and three anonymous reviewers for constructive and thoughtful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tamara B. Robinson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadchatheeswaran, S., Branch, G.M. & Robinson, T.B. Changes in habitat complexity resulting from sequential invasions of a rocky shore: implications for community structure. Biol Invasions 17, 1799–1816 (2015). https://doi.org/10.1007/s10530-014-0837-4

Download citation

Keywords

  • Balanus glandula
  • Ecosystem engineering
  • Habitat complexity
  • Mytilus galloprovincialis
  • Semimytilus algosus
  • South Africa