Advertisement

Biological Invasions

, Volume 17, Issue 6, pp 1697–1712 | Cite as

Community structure, succession and invasibility in a seasonal deciduous forest in southern Brazil

  • M. S. Dechoum
  • T. T. Castellani
  • S. M. Zalba
  • M. Rejmánek
  • N. Peroni
  • J. Y. Tamashiro
Original Paper

Abstract

Majority of invasive trees colonize grasslands, shrublands, and temperate forests. Hovenia dulcis is an exception, because it is one of the most pervasive invaders in Brazilian subtropical forests where it has changed their structure and composition. This study has aimed to identify the clues for its success by defining the structural and functional characteristics of plant communities in different stages of succession with and without H. dulcis. Following the general assumptions of invasion ecology, we expected that H. dulcis establishment and invasion success would be significantly higher in early successional communities, with high resource availability and low species richness and diversity, as well as low functional diversity. Contrary to this hypothesis, no differences were found between plant communities invaded and non-invaded by H. dulcis at three different succession stages. No relationship was found between species richness and diversity and functional diversity, with respect to invasibility along the successional gradient. Hovenia dulcis is strongly associated with semi-open vegetation, where the species was found in higher density. The invasion of open vegetation is more recent, providing evidence of the species’s ability to invade plant communities in early successional stages. We concluded that the colonization by H. dulcis was associated with forest openness, but the species is also able to colonize semi-open vegetation, and persist in the successionally more advanced communities.

Keywords

Invasive trees Hovenia dulcis Subtropical forests Functional diversity Biotic resistance Disturbance 

Notes

Acknowledgments

The expert help of Cassio Daltrini Neto, Tiago Barbosa and Daniel Falkenberg. Sílvia Ziller, Clare Aslan, Elaine Chow and Hugh Safford provided important suggestions and helped improve the language. Two anonymous referees whose comments and suggestions substantially improved the manuscript. Financial support came from Tractebel Energia S.A., from the Graduate Program in Ecology of the Federal University of Santa Catarina and from the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina, Brazil. MS Dechoum is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil. N Peroni is supported by Conselho Nacional de Desenvolvimento Científico e Tecnólogico, Brazil. SM Zalba receives support of Universidad Nacional del Sur and CONICET, Argentina.

Supplementary material

10530_2014_827_MOESM1_ESM.doc (200 kb)
Supplementary material 1 (DOC 200 kb)

References

  1. Ammondt SA, Litton CM (2011) Competition between native Hawaiian plants and the invasive grass Megathyrsus maximus: implications of functional diversity for ecological restoration. Restor Ecol 20(5):638–646CrossRefGoogle Scholar
  2. Ayres M, Ayres Junior M, Ayres DL, Santos AA (2007) Biostat 5.0—aplicações estatísticas nas áreas das ciências biomédicas. OnG Mamirauá, BelémGoogle Scholar
  3. Bardall ML, Roderjan CV, Galvão F, Curcio GR (2004) Caracterização florística e fitossociológica de um trecho sazonalmente inundável de floresta aluvial, em Araucária. PR Ci Fl 14(2):37–50Google Scholar
  4. Beard JS (1955) The classification of tropical American vegetation-types. Ecology 36(1):89–100CrossRefGoogle Scholar
  5. Bellingham PJ, Tanner EVJ, Healey JR (2005) Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests. J Veg Sci 16(6):675–684Google Scholar
  6. Belote RT, Jones RH, Hood SM, Wender BW (2008) Diversity-invasibility across an experimental disturbance gradient in Appalachian forests. Ecology 89:183–192CrossRefPubMedGoogle Scholar
  7. Boeni BO (2011) Riqueza, estrutura e composição de espécies em floresta secundária invadida por Hovenia dulcis Thunb., caracterização do seu nicho de regeneração e efeitos alelopáticos. Thesis, Vale dos Sinos University, BrazilGoogle Scholar
  8. Brasil (2008) Instrução Normativa 6, de 23 de setembro de 2008. Reconhece as espécies da flora brasileira ameaçadas de extinção. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, 24 Sept 2008Google Scholar
  9. Brown CS, Rice KJ (2010) Effects of belowground resource use complementarity on invasion of constructed grassland plant communities. Biol Invasions 12:1319–1334CrossRefGoogle Scholar
  10. Buckey YM et al (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857CrossRefGoogle Scholar
  11. Budke JC, Athayde EA, Giehk ELH, Záchia RA, Eisinger SM (2005) Composição florística e estratégias de dispersão de espécies lenhosas em uma floresta ribeirinha, arroio Passo das Tropas, Santa Maria, RS, Brasil. Iheringia 60(1):17–24Google Scholar
  12. Burnham KM, Lee TD (2010) Canopy gaps facilitate establishment, growth, and reproduction of invasive Frangula alnus in a Tsuga canadensis dominated forest. Biol Invasions 12:1509–1520CrossRefGoogle Scholar
  13. Byun C, Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139CrossRefGoogle Scholar
  14. Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotrop Fauna Environ 36:85–92CrossRefGoogle Scholar
  15. Carvalho PER (1994a) Ecologia, silvicultura e usos da uva-do-japão (Hovenia dulcis Thunberg). Circular Técnica EMBRAPA Florestas, ColomboGoogle Scholar
  16. Carvalho PER (1994b) Espécies florestais brasileiras—recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA Florestas, ColomboGoogle Scholar
  17. Casanoves F, Pla L, Di Rienzo JA, Díaz S (2010) FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol 2(3):233–237CrossRefGoogle Scholar
  18. Catford JA, Daehler CC, Murphy HT, Sheppard AW, Hardesty BD, Westcott DA, Rejmánek M, Bellingham PJ, Pergl J, Horvitz CC, Hulme PE (2012) The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect Plant Ecol Evol Syst 14:231–241CrossRefGoogle Scholar
  19. Colwell RK (2006) Estimates: statistical estimation of species richness and shared species from samples. Version 8. Persistent purl.ock.org/estimatesGoogle Scholar
  20. Costa JT, Estevan DA, Bianchini E, Fonseca ICB (2011) Composição florística das espécies vasculares e caráter sucessional da flora arbórea de um fragmento de Floresta Estacional Semidecidual no Sul do Brasil. Rev Bras Bot 34(3):411–422CrossRefGoogle Scholar
  21. Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drives of spread in invasive plants: dispersal, demography or landscape: and can we use this knowledge to aid management? Biol Invasions 13:1649–1661CrossRefGoogle Scholar
  22. Cunard C, Lee TD (2009) Is patience a virtue? Succession, light, and the death of invasive glossy buckthorn (Frangula alnus). Biol Invasions 11:577–586CrossRefGoogle Scholar
  23. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534CrossRefGoogle Scholar
  24. Dechoum MS, Ziller SR (2013) Métodos para controle de plantas exóticas invasoras. Biotemas 26(1):69–77CrossRefGoogle Scholar
  25. DeGasperis BG, Motzkin G (2007) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88(12):3115–3125CrossRefPubMedGoogle Scholar
  26. Denslow JS, Dewalt SJ (2008) Exotic plant invasion in tropical forests: patterns and hypothesis. In: Carson W, Schnitzer S (eds) Tropical forest community ecology. Wiley, New York, pp 409–426Google Scholar
  27. dos Santos K, Kinoshita LS, dos Santos FAM (2007) Tree species composition and similarity in semi deciduous forest fragments of southeastern Brazil. Biol Cons 135:268–277CrossRefGoogle Scholar
  28. Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  29. Eschtruth AK, Battles JJ (2011) The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology 92:1314–1322CrossRefPubMedGoogle Scholar
  30. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  31. Fine PVA (2002) The invasibility of tropical forests by exotic plants. J Trop Ecol 18:687–705CrossRefGoogle Scholar
  32. Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties and light availability. Ecol Appl 17:452–463CrossRefPubMedGoogle Scholar
  33. Flory SL, Clay K (2009) Effects of roads and forest successional age on experimental plant invasions. Biol Conserv 142(11):2531–2537CrossRefGoogle Scholar
  34. Franco AMS (2008) Estrutura, diversidade e aspectos ecológicos do componente arbustivo e arbóreo em uma floresta estacional, Parque Estadual do Turvo, Sul do Brasil. Dissertation, Federal University of Rio Grande do Sul, BrazilGoogle Scholar
  35. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703CrossRefPubMedGoogle Scholar
  36. Giehl EL, Athayde EA, Budke JC, Gesing JPA, Einsiger SM, Canto-Dorow TS (2007) Espectro e distribuição vertical das estratégias de dispersão de diásporos do componente arbóreo em uma floresta estacional no sul do Brasil. Acta Bot Bras 21(1):137–145CrossRefGoogle Scholar
  37. Gilbert B, Lechowicz MJ (2005) Invasibility and abiotic gradients: the positive correlation between native and exotic plant diversity. Ecology 86:1848–1855CrossRefGoogle Scholar
  38. Godoy O, Saldaña A, Fuentes N, Valladares F, Gianoli E (2011) Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol Invasions 13:1615–1625CrossRefGoogle Scholar
  39. Goldstein LJ, Suding KN (2013) Aplying competition theory to invasion: resource impacts indicate invasion mechanisms in California shrublands. Biol Invasions 16:191–203CrossRefGoogle Scholar
  40. Green PT, Lake PS, O’Dowd DJ (2004) Resistance of island rainforest to invasion by alien plants: influence of microhabitat and herbivory on seedling performance. Biol Invasions 6:1–9CrossRefGoogle Scholar
  41. Hartshorn GS (1978) Treefalls and tropical forest dynamics. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, New York, pp 617–638Google Scholar
  42. Hendges CD, Fortes VB, Dechoum MS (2012) Consumption of the invasive alien species Hovenia dulcis thumb. (Rhamnaceae) by Sapajus nigritus Kerr, 1792 in a protected area in southern Brazil. Rev Bras Zoociências 14(1, 2, 3):255–260Google Scholar
  43. Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848CrossRefGoogle Scholar
  44. Hobbs RJ (2011) Land use. In: Simberloff D, Rejmánek R (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 425–427Google Scholar
  45. Huston MA (2004) Management strategies for plant invasions: manipulating productivity, disturbance, and competition. Divers Distrib 10:167–178CrossRefGoogle Scholar
  46. Hyun TK, Eom SH, Yu CY, Roitsch T (2009) Hovenia dulcis—an Asian traditional herb. Planta Med 76:943–949CrossRefGoogle Scholar
  47. IBGE (2012) Technical Manual of Brazilian vegetation, 2nd edn. IBGE, Rio de JaneiroGoogle Scholar
  48. IBM Corp (2010) IBM SPSS statistics for Windows, version 19.0. IBM Corp, ArmonkGoogle Scholar
  49. Ivanauskas NM, Rodrigues RR (2000) Florística e fitossociologia de remanescentes de floresta estacional Deciduous em Piracicaba, São Paulo, Brasil. Rev Bras Bot 23(3):291–304CrossRefGoogle Scholar
  50. Johnson VS, Litvaitis JA, Lee TD, Frey S (2006) The role of spatial and temporal scale in colonization and spread of invasive shrubs in early successional habitats. For Ecol Manag 228(1–3):124–134CrossRefGoogle Scholar
  51. Katz DSW, Lovett GM, Canham CD, O’Reilly CM (2010) Legacies of land use history diminish over 22 years in a forest in southeastern New York. J Torrey Bot Soc 137(2):236–251CrossRefGoogle Scholar
  52. Kilka RV, Longhi SJ (2011) A regeneração natural e a sucessão condicionada por diferentes tipos de distúrbios: um estudo de caso. In: Schumacher MV, Longhi SJ, Brun E, Kilca RV (eds) A Floresta estacional subtropical—caracterização e ecologia no rebordo do planalto meridional. Santa Maria, pp 121–140Google Scholar
  53. Klein RM (1972) Árvores nativas da floresta subtropical do Alto Uruguai. Sellowia 24:9–62Google Scholar
  54. Klein RM (1978) Mapa fitogeográfico do estado de Santa Catarina. In: Klein RM (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, ItajaíGoogle Scholar
  55. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269CrossRefGoogle Scholar
  56. Laurance WF, Peres CA (2006) Emerging threats to tropical forests. University of Chicago Press, ChicagoGoogle Scholar
  57. Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy LE (2000) Rainforest fragmentation kills big trees. Nature 404:836CrossRefPubMedGoogle Scholar
  58. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  59. Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482CrossRefPubMedGoogle Scholar
  60. Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Levine JD (2000) Species diversity and biological invasions: relating process to community pattern. Science 288:852–854CrossRefPubMedGoogle Scholar
  62. Levine JD, Alder PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  63. Lonsdale WM (1999) Global pattern of plant invasions and the concept of invasibility. Ecology 80(5):1522–1536CrossRefGoogle Scholar
  64. Loregian AC, Silva BB, Zanin EM, Decian WS, Henke-Oliveira C, Budke JC (2012) Padrões espaciais e ecológicos de espécies arbóreas refletem a estrutura em mosaicos de uma floresta subtropical. Acta Bot Bras 26(3):593–606CrossRefGoogle Scholar
  65. Major KC, Nosko P, Kuehne C, Campbell D, Bauhus J (2013) Regeneration dynamics of non-native northern red oak (Quercus rubra L.) populations as influenced by environmental factors: a case study in managed hardwood forests of southwestern Germany. For Ecol Manag 291:144–153CrossRefGoogle Scholar
  66. Martin PH, Marks PL (2006) Intact forests provide weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). J Ecol 94:1070–1079CrossRefGoogle Scholar
  67. Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7(3):142–149CrossRefGoogle Scholar
  68. Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64CrossRefGoogle Scholar
  69. Michalski F, Nishi I, Peres CA (2007) Disturbance-mediated drift in tree functional groups in Amazonian forest fragments. Biotropica 36:691–701CrossRefGoogle Scholar
  70. Mikich SB, Silva SM (2001) Composição florística e fenologia das espécies zoocóricas de remanescentes de Floresta Estacional SemiDeciduous no centro-oeste do Paraná. Acta Bot Bras 15(1):89–113CrossRefGoogle Scholar
  71. Moody ME, Mack RN (1988) Controlling the spread of plant invasions: the importance of nascent foci. J Appl Ecol 25:1009–1021CrossRefGoogle Scholar
  72. Pla L, Casanoves F, Di Rienzo J (2012) Quantifying functional biodiversity. Springer, New YorkCrossRefGoogle Scholar
  73. Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13(3):448–459CrossRefGoogle Scholar
  74. Pysek P, Richardson D (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Ecological studies, vol 193. Springer, Berlin, pp 97–123CrossRefGoogle Scholar
  75. Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P (2003) Plant traits as predictors of performance in ecological restoration. J Appl Ecol 40:65–77CrossRefGoogle Scholar
  76. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  77. Radtke A, Ambraß S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manag 291:308–317CrossRefGoogle Scholar
  78. Reitz R (1974) Palmeiras. Flora Ilustrada Catarinense, Herbário Barbosa RodriguesGoogle Scholar
  79. Reitz R, Klein RM, Reis A (1978) Projeto Madeira de Santa Catarina. Revista Sellowia 28–30Google Scholar
  80. Reitz R, Klein RM, Reis A (1988) Projeto madeira do Rio Grande do Sul. Governo do Estado do Rio Grande do Sul, Porto AlegreGoogle Scholar
  81. Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 369–388Google Scholar
  82. Rejmánek M (1996) Species richness and resistance to invasion. In: Orians G, Dirzo R, Cushman JH (eds) Biodiversity and ecosystem processes in tropical forests. Ecological studies 122. Springer, New York, pp 153–172CrossRefGoogle Scholar
  83. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77(6):1655–1661CrossRefGoogle Scholar
  84. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive species—2013 update on the global database. Divers Distrib 19:1093–1094CrossRefGoogle Scholar
  85. Ruschel AR, Nodari RO, Moerschbacher BM (2007) Woody plant species richness in the Turvo State park, a large remnant of deciduous Atlantic forest, Brazil. Biodivers Conserv 16:1699–1714CrossRefGoogle Scholar
  86. Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa C, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260CrossRefGoogle Scholar
  87. SAS Institute (1998) StatView for Windows: version 5.0.1Google Scholar
  88. Schaff LB, Filho AF, Galvão F, Sanquetta CR, Longhi SJ (2006) Modificações florístico-estruturais de um remanescente de Floresta Ombófila Mista Montana no período de 1979 e 2000. Ci Fl 16(3):271–291Google Scholar
  89. Schupp EW (2011) Dispersal ability, plants. In: Simberloff D, Rejmánek R (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 159–165Google Scholar
  90. Selle GL (2009) Guias de densidade e índices de sítios para Hovenia dulcis Thunberg na região central do estado do Rio Grande do Sul, Brasil. Dissertation, Federal University of Santa Maria, BrazilGoogle Scholar
  91. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17(4):170–176CrossRefGoogle Scholar
  92. Siderhurst LA, Griscom HP, Kyger C, Stutzman J, Trumbo B (2012) Tree species composition and diversity and the abundance of exotics in forest fragments of the Shenandoah Valley, Virginia. Castanea 77(4):348–363CrossRefGoogle Scholar
  93. Silva JG (2012) Efeito da arbórea introduzida Hovenia dulcis Thunb. (Rhamnaceae) sobre o componente arbóreo-arbustivo regenerante da Floresta Atlântica no sul do Brasil. Thesis, Federal University of Rio Grande do Sul, BrazilGoogle Scholar
  94. Siminski A, Fantini AC, Guries RP, Ruschel AR, Reis MS (2011) Secondary forest succession in the Mata Atlantica, Brazil: floristic and phytosociological trends. ISRN Ecol. 2011, (Article ID 759893), p 19. doi:10.5402/2011/759893Google Scholar
  95. Sobral M, Jarenkow JA, Brack P, Irgang B, Larocca J, Rodrigues RS (2006) Flora arbórea e arborescente do Rio Grande do Sul. Editora Rima, São CarlosGoogle Scholar
  96. StatSoft Inc. (2004) STATISTICA (data analysis software system) version 7. www.statsoft.com
  97. Symstad AJ (2000) A test of the effects of functional group richness and composition on grassland invasibility. Ecology 81(1):99–109CrossRefGoogle Scholar
  98. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  99. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Nature 277:1300–1302Google Scholar
  100. Van der Pijl L (1982) Principals of dispersal of higher plants. Springer, BerlinCrossRefGoogle Scholar
  101. Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (2012) inventário florístico florestal de Santa Catarina—floresta estacional deciduous, vol 2. Edifurb, BlumenauGoogle Scholar
  102. Von Holle B, Motzkin G (2007) Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biol Conserv 136(1):33–43CrossRefGoogle Scholar
  103. Von Holle B, Simberloff D (2005) Ecological resistance overwhelmed by propagule pressure. Ecology 86(12):3212–3218CrossRefGoogle Scholar
  104. Von Holle B, Delcourt HZ, Simberloff D (2003) The importance of biological inertia in plant community resistance to invasion. J Veg Sci 14:425–432CrossRefGoogle Scholar
  105. Webb SL, Dwyer M, Kaunzinger CK, Wyckoff PH (2000) The myth of the resilient forest: case study of the invasive Norway Maple (Acer platanoides). Rhodora 102:332–354Google Scholar
  106. Webster CR, Jenkins MA, Jose S (2006) Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J For 104(7):366–374Google Scholar
  107. Wheeler RE (2010) Permutation tests for linear models in R. http://cran.r-project.org/web/packages/lmPerm/vignettes/lmPerm.pdf. (Accessed 14 Nov 2013)
  108. Whitfield TJS, Lodge AG, Roth AM, Reich PB (2014) Community phylogenetic and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L. J Plant Ecol 7(2):202–209CrossRefGoogle Scholar
  109. Whitmore TC (1989) Canopy gaps and the two major groups of tropical trees. Ecology 70:536–538CrossRefGoogle Scholar
  110. Yamamoto LF, Kinoshita LS, Martins FR (2007) Síndromes de polinização e de dispersão em fragmentos da Floresta Estacional Semidecídua Montana, SP, Brasil. Acta Bot Bras 21(1):137–145CrossRefGoogle Scholar
  111. Yun CW, Lee BC (2002) Vegetation structure of Hovenia dulcis community in South Korea. Korean J Ecol 25(2):93–99CrossRefGoogle Scholar
  112. Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Rev Bras Bot 34(3):431–446CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. S. Dechoum
    • 1
  • T. T. Castellani
    • 1
  • S. M. Zalba
    • 2
  • M. Rejmánek
    • 3
  • N. Peroni
    • 1
  • J. Y. Tamashiro
    • 4
  1. 1.Departamento de Ecologia e Zoologia, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía Blanca, Buenos AiresArgentina
  3. 3.Department of Evolution and EcologyUniversity of CaliforniaDavisUSA
  4. 4.Departamento de Botânica, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations