Biological Invasions

, Volume 17, Issue 5, pp 1397–1406 | Cite as

A potential invasion route of Cactoblastis cactorum within the Caribbean region matches historical hurricane trajectories

  • Guadalupe Andraca-Gómez
  • Mariano Ordano
  • Karina Boege
  • César A. Domínguez
  • Daniel Piñero
  • Rubén Pérez-Ishiwara
  • Jacqueline Pérez-Camacho
  • Maikel Cañizares
  • Juan FornoniEmail author
Original Paper


The cactus moth, Cactoblastis cactorum mainly distributed throughout central and northeastern Argentina was intentionally introduced in the Caribbean region in 1957 as a biological control agent of cacti species of the genus Opuntia. This moth invaded during the last 20–30 years the North American continent, threatening the major center of biodiversity of native Opuntia species. Although human induced and natural dispersal have been invocated to explain its expansion in the non-native distribution range, there is still no evidence to support natural dispersal. In particular, hurricanes are one of the major environmental factors affecting species dispersal in the region. In this study we used mitochondrial DNA to examine whether the spatial distribution of haplotype variation of C. cactorum is at least partially explained by hurricane trajectories within the Caribbean region. DNA sequences for the mitochondrial gene cytochrome oxidase I were obtained for a sample of 110 individuals from the Antillean islands. This information was combined with existing sequences in the GenBank for the same gene for the Caribbean and Florida (N = 132 sequences). Genetic diversity descriptors, a haplotypic network, a spatial analyses of molecular variance and a landscape genetic analysis of migration conditioned by hurricane tracks were conducted to test our hypothesis. Our results revealed a significant spatial grouping of haplotypes consistent with the more frequent hurricane trajectories in the Caribbean region. Significant isolation by distance conditioned by hurricane tracks was detected. Populations of Florida were genetically closer to those of Cuba than to the rest of the population sampled. Within the region, Cuba appears as a reservoir of genetic diversity increasing the risk of invasion to Mexico and the US. Despite commercial transportation of Opuntia promoted dispersal to Florida, our results support the hypothesis that natural disturbances such as hurricanes played a role dispersing this invasive insect. Future conservation programs of North American Opuntia species requires taking into account hurricane mediated dispersal events and permanent whole regional monitoring and international control policies to prevent future range expansions of C. cactorum.


Cytochrome oxidase I Biological invasions Cactus moth Cactoblastis cactorum Dispersal Phylogeography 



G. Andraca-Gómez acknowledges the scholarship and financial support provided by the National Council of Science and Technology (CONACyT), and Posgrado en Ciencias Biológicas UNAM. A. Flores-Domínguez, A. Wegier, A. González-Rodriguez and J. Golubov participated in fruitful discussions during the elaboration of the study, and F. Molina-Freaner and two anonymous reviewers made useful suggestions to the final version of the manuscript. This study was financed by CONABIO JE002 to JF.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10530_2014_802_MOESM1_ESM.docx (76 kb)
Supplementary material 1 (DOCX 75 kb)


  1. Abdelkrim J, Pascal M, Samadi S (2007) Establishing causes of eradication failure based on genetics: case study of ship rat eradication in Ste. Anne Archipelago Conserv Biol 21:719–730CrossRefGoogle Scholar
  2. Alonso A, Dallmeier F, Granek E, Raven P (2001) Biodiversity: connecting with the tapestry of life. Smithsonian Institution/Monitoring and Assessment of Biodiversity Program and President’s Committee of Advisors on Science and Technology, WashingtonGoogle Scholar
  3. Apodaca JJ, Trexler JC, Jue NK, Schrader M, Travis J (2013) Large-scale natural disturbance alters genetic population structure of the Sailfin Molly, Poecilia latipinna. Am Nat 181:254–263CrossRefPubMedGoogle Scholar
  4. Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Bennett FD, Habeck DH (1995) Cactoblastis cactorum: A successful weed control agent in the Caribbean, now a pest in Florida? In: Delfosse ES, Scott RR (eds) Proceedings of the VII international symposium on biological control of weeds. CSIRO, pp 21–26Google Scholar
  6. Blanco EF, Vázquez LL (2001) Análisis de los riesgos fitosanitarios asociados al uso de Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae: Phycitinae) como agente de control biológico de Opuntia dillenii (Cactaceae) en Cuba. Fitosanidad 5:63–73Google Scholar
  7. Boucher AC, Mimee B, Montarry J, Bardou-Valette S, Bélair G, Moffett P, Grenier E (2013) Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Mol Phylogenet Evol 69:75–82CrossRefPubMedGoogle Scholar
  8. Cadotte MW, McMahon SM, Fukami T (2006) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, BerlinCrossRefGoogle Scholar
  9. Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11:122–137CrossRefPubMedGoogle Scholar
  10. Chazdon RL (2003) Tropical forest recovery: legacies of human intervention and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  12. Courtenay WR (1995) Marine fish introductions in southeastern Florida. Am Fish Soc Introd Fish Sect Newsl 14:2–3Google Scholar
  13. Drake VA, Farrow RA (1988) The influence of atmospheric structure and motions on insect migration. Annu Rev Entomol 33:183–210CrossRefGoogle Scholar
  14. Dudaniec RY, Gardner MG, Donnellan S, Kleindorfer S (2008) Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago. BMC Ecol 8:1–13CrossRefGoogle Scholar
  15. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  16. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  18. Fleming TH, Murray KL (2009) Population and genetic consequences of hurricanes for three species of West Indian phyllostomid bats. Biotropica 41:250–256CrossRefGoogle Scholar
  19. Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European colorado potato beetle populations. Mol Ecol 14:4207–4219CrossRefPubMedGoogle Scholar
  20. Habeck DH, Bennet FD (1990) Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), a phycitine new to Florida. Entomol Circ 333:1–4Google Scholar
  21. Hedges SB (1996) Historical biogeography of West Indian vertebrates. Annu Rev Ecol Syst 27:163–196CrossRefGoogle Scholar
  22. Hedrick PW (2011) Genetics of populations. Jones and Bartlett, USAGoogle Scholar
  23. Heinrich C (1939) The cactus-feeding Phycitinae: a contribution toward a revision of the American pyralidoid moths of the family Phycitidae. Proc US Natl Mus 86:331–413CrossRefGoogle Scholar
  24. Hurtado LA, Santamaria CA, Fitzgerald LA (2012) Conservation genetics of the critically endangered Saint Croix ground lizard (Ameiva polops Cope 1863). Conserv Genet 13:665–679CrossRefGoogle Scholar
  25. Jezorek H, Baker AJ, Stiling PD (2012) Effects of Cactoblastis cactorum on the survival and growth of North American Opuntia. Biol Invasions 14:2355–2367CrossRefGoogle Scholar
  26. Johnson DM, Stiling PD (1998) Distribution and dispersal of Cactoblastis cactorum (Lepidoptera: Pyralidae), an exotic opuntia-feeding moth. Fla Entomol 81:12–22CrossRefGoogle Scholar
  27. Julien MH, Griffiths MW (1998) Biological control of weeds: a world catalogue of agents and their target weeds, 4th edn. CABI Publishing, WallingfordGoogle Scholar
  28. Landsea CW (1993) A climatology of intense (or major) Atlantic hurricanes. Mon Weather Rev 121:1703–1713CrossRefGoogle Scholar
  29. Landsea CW, Nicholls N, Gray WM, Avila LA (1996) Downward trends in the frequency of intense Atlantic hurricanes during five decades. Geophys Res Lett 23:1697–1700CrossRefGoogle Scholar
  30. Levine RC, Peterson AT, Benedict MQ (2004) Distribution of members of Anopheles quadrimaculatus Say s.l. Diptera: Culicidae) and implications for their roles in malaria transmission in the United States. J Med Entomol 41:607–613CrossRefPubMedGoogle Scholar
  31. Lombaert E, Guillemaud T, Thomas CE, Lawson-Handley LJ, Li J, Wang S, Pang H, Goryacheva I, Zakharov IA, Jousselin E, Poland RL, Migeon A, van Lenteren J, DeClercq P, Barkevens N, Jones W, Estoup A (2011) Inferring the origin of populations introduced from genetically structures native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis. Mol Ecol 20:4654–4670CrossRefPubMedGoogle Scholar
  32. Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects—the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–369CrossRefPubMedGoogle Scholar
  33. Lugo AE, Rogers CS, Nixon SW (2000) Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean. Ambio 29:106–114CrossRefGoogle Scholar
  34. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME (2011) Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biol Invasions 13:857–868CrossRefGoogle Scholar
  35. McRae BH, Shah VB (2009) Circuitscape user’s guide. The University of California, Santa BarbaraGoogle Scholar
  36. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution and conservation. Ecology 89:2712–2724CrossRefPubMedGoogle Scholar
  37. Muscarella RA, Murray KL, Ortt D, Russell AL, Fleming TH (2011) Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of greater antillean bats. PLoS One 6:1–3CrossRefGoogle Scholar
  38. NAPPO, North American Plant Protection Organization (2006) detection of an outbreak of cactus moth (Cactoblastis cactorum) in Isla Mujeres, Quintana Roo, Mexico. North American plant protection organization’s phytosanitary alert system, official pest reports.
  39. Nentwig W (2007) Biological invasions. Springer, BerlinCrossRefGoogle Scholar
  40. Pemberton RW (1995) Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States. An immigrant biological control agent or an introduction of the nursery industry? Am Entomol 41:230–232CrossRefGoogle Scholar
  41. Pemberton RW, Liu H (2007) Control and presistence of native Opuntia on Nevis and St. Kitts 50 years after the introduction of Cactoblastis cactorum. Biol Control 41:272–282CrossRefGoogle Scholar
  42. Pratt PD, Rayamajhi MB, Bernier LS, Center TD (2006) Geographic range expansion of Boreioglycaspis melaleucae (Hemiptera: Psyllidae) to Puerto Rico. Fla Entomol 89:529–531CrossRefGoogle Scholar
  43. Richardson DM (2011) Invasion science: the roads travelled and the roads ahead. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Oxford, pp 396–407Google Scholar
  44. Rose R, Weeks R, Usnick S (2011) Cactus moth, C. cactorum 2011 survey plan for PPQ and state cooperators. APHIS, USDA, RiverdaleGoogle Scholar
  45. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  46. Sakai A, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  47. Simmonds FJ, Bennett FD (1966) Biological control of Opuntia spp. by Cactoblastis cactorum in the Leeward Islands (West Indies). Entomophaga 11:183–189CrossRefGoogle Scholar
  48. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  49. Simonsen TJ, Brown RL, Sperling FAH (2008) Tracing an invasion: phylogeography of Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States based on mitochondrial DNA. Ann Entomol Soc Am 101:899–905CrossRefGoogle Scholar
  50. Stiling P (2002) Potential non-target effects of a biological control agent, prickly pear moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), in North America, and possible management actions. Biol Invasions 4:273–281CrossRefGoogle Scholar
  51. Szczys P, Nisbet ICT, Wingate DB (2012) Conservation genetics of the Common Tern (Sterna hirundo) in the North Atlantic region; implications for the critically endangered population at Bermuda. Conserv Genet 13:1039–1043CrossRefGoogle Scholar
  52. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  53. Torres JA (1992) Lepidoptera outbreaks in response to successional changes after the passage of Hurricane Hugo in Puerto Rico. J Trop Ecol 8:285–298CrossRefGoogle Scholar
  54. Vega R, Vázquez-Domínguez E, Mejía A, Cuarón AD (2007) Unexpected high levels of genetic variability and the population structure of an island endemic rodent Oryzomys couesi cozumelae). Biol Conserv 137:210–222CrossRefGoogle Scholar
  55. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478Google Scholar
  56. Zimmermann HG, Pérez-Sandi M (2006) The consequences of introducing the cactus moth Cactoblastis cactorum to the Caribbean and beyondGoogle Scholar
  57. Zimmermann HG, Moran VC, Hoffmann JH (2000a) The renowned cactus moth, Cactoblastis cactorum: its natural history and threat to native Opuntia floras in Mexico and the United States of America. Diver Distrib 6:259–269CrossRefGoogle Scholar
  58. Zimmermann HG, Pérez M, Goluvob J, Soberón J, Sarukán J (2000b) Cactoblastis cactorum, una nueva plaga de muy alto riesgo para las Opuntias de México. Biodiversitas 6:1–14Google Scholar
  59. Zimmermann HG, Klein H, Bloem S (2004) The biology, history, threats, surveillance and control of the cactus moth, Cactoblastis cactorum. Joint FAO/IAEA Division of Nuclear Techniques in food and Agriculture. IAEA, AustriaGoogle Scholar
  60. Zimmermann HG, Bloem S, Klein H. (2007) Cactoblastis cactorum. The Biology, history, threat, surveillance and control of the cactus moth. FAO/IAEA Division of Nuclear Techniques in Food and AgricultureGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guadalupe Andraca-Gómez
    • 1
  • Mariano Ordano
    • 2
    • 3
  • Karina Boege
    • 1
  • César A. Domínguez
    • 1
  • Daniel Piñero
    • 1
  • Rubén Pérez-Ishiwara
    • 1
  • Jacqueline Pérez-Camacho
    • 4
  • Maikel Cañizares
    • 4
  • Juan Fornoni
    • 1
    Email author
  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoDistrito FederalMexico
  2. 2.Fundación Miguel LilloSan Miguel de TucumánArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)San Miguel de TucumánArgentina
  4. 4.Instituto de Ecología y SistemáticaMinisterio de Ciencia, Tecnología y Medio AmbienteLa Habana 19Cuba

Personalised recommendations