Biological Invasions

, Volume 17, Issue 4, pp 1199–1213 | Cite as

Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?

  • Sophie MallezEmail author
  • Chantal Castagnone
  • Margarida Espada
  • Paulo Vieira
  • Jonathan D. Eisenback
  • Mark Harrell
  • Manuel Mota
  • Takuya Aikawa
  • Mitsuteru Akiba
  • Hajime Kosaka
  • Philippe Castagnone-Sereno
  • Thomas Guillemaud
Original Paper


Identifying the invasion routes and determining the origin of new outbreaks of invasive species are of crucial importance if we are to understand the invasion process, improve or establish regulatory measures and, potentially, limit the damage. We focused here on the invasion of Europe by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer, 1934; Nickle 1970; Nematoda: Aphelenchoididae), a major pest of forest ecosystems, native to North America and already invasive in Asia since the beginning of the twentieth century. We evaluated the genetic diversity and structure of worldwide field PWN samples by classical and Bayesian population genetics methods to determine the source of the European invasive populations and the number of introduction events in Europe. We found (1) a very strong spatial genetic structure in native PWN populations, (2) a very low level of polymorphism in each of the invaded areas and (3) contrasted results concerning the origin of European invasive populations. Our findings provide evidence for: (1) a large effect of genetic drift on the biological cycle of the PWN, due to intense demographic bottlenecks during tree infections, not compensated for by effective dispersal of its vector; (2) a single introduction event for each of the invaded areas in Japan and Europe and a small effective size for the introduced populations and (3) a mainland Portuguese origin for PWN populations from Madeira. However, more sophisticated methods of invasion route inference and broader sampling are required to conclusively determine the origin of the European outbreak.


Bursaphelenchus xylophilus Population genetics Diversity Genetic structure Microsatellite markers Pine wilt disease 



We would like to thank Arnaud Gaigher and Pedro Barbosa for technical support, Douglas LeDoux and Julia Thompson for American sampling and Eric Lombaert for fruitful discussions. This work was funded by the EU REPHRAME Project (KBBE.2010.1.4-09).

Supplementary material

10530_2014_788_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
10530_2014_788_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1240 kb)


  1. Abelleira A, Picoaga A, Mansilla JP, Aguin O (2011) Detection of Bursaphelenchus xylophilus, causal agent of pine wilt disease on Pinus pinaster in Northwestern Spain. Plant Dis 95:776CrossRefGoogle Scholar
  2. Akbulut S, Linit MJ (1999) Flight performance of Monochamus carolinensis (Coleoptera: Cerambycidae) with respect to nematode phoresis and beetle characteristics. Environ Entomol 28:1014–1020CrossRefGoogle Scholar
  3. Akbulut S, Stamps WT (2012) Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. For Pathol 42:89–99Google Scholar
  4. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x CrossRefGoogle Scholar
  5. Barun A, Niemiller ML, Fitzpatrick BM, Fordyce JA, Simberloff D (2013) Can genetic data confirm or refute historical records? The island invasion of the small Indian mongoose (Herpestes auropunctatus). Biol Invasions 15:2243–2251. doi: 10.1007/s10530-013-0447-6 CrossRefGoogle Scholar
  6. Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035PubMedCentralPubMedGoogle Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France), Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de MontpellierGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  9. Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625CrossRefPubMedGoogle Scholar
  10. Bossdorf O, Auge H, Lafuma L, Rogers W, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070-z CrossRefPubMedGoogle Scholar
  11. Boucher AC, Mimee B, Montarry J, Bardou-Valette S, Belair G, Moffett P, Grenier E (2013) Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec. Can Mol Phylogenet Evol 69:75–82. doi: 10.1016/j.ympev.2013.05.020 CrossRefGoogle Scholar
  12. Castagnone C, Abad P, Castagnone-Sereno P (2005) Satellite DNA-based species-specific identification of single individuals of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Eur J Plant Pathol 112:191–193. doi: 10.1007/s10658-004-0580-2 CrossRefGoogle Scholar
  13. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257PubMedCentralPubMedGoogle Scholar
  14. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi: 10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar
  15. Cheng XY, Cheng FX, Xu RM, Xie BY (2008) Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) and its possible spread routes in China. Heredity 100:356–365. doi: 10.1038/sj.hdy.6801082 CrossRefPubMedGoogle Scholar
  16. Cheng XY, Xie PZ, Cheng FX, Xu RM, Xie BY (2009) Competitive displacement of the native species Bursaphelenchus mucronatus by an alien species Bursaphelenchus xylophilus (Nematoda: Aphelenchida: Aphelenchoididae): a case of successful invasion. Biol Invasions 11:205–213CrossRefGoogle Scholar
  17. Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627CrossRefPubMedGoogle Scholar
  18. Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11:701–709. doi: 10.1111/j.1461-0248.2008.01181.x CrossRefPubMedGoogle Scholar
  19. Dropkin VH, Foudin A, Kondo E, Linit MJ, Smith M, Robbins K (1981) Pinewood nematode: a threat to US forests? Plant Dis 65:1022–1027CrossRefGoogle Scholar
  20. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  21. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130. doi: 10.1111/j.1365-294X.2010.04773.x CrossRefPubMedGoogle Scholar
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  23. Evans HF, McNamara DG, Braasch H, Chadoeuf J, Magnusson C (1996) Pest risk analysis (PRA) for the territories of European Union (as PRA area) on Bursaphelenchus xylophilus and its vectors in the genus Monochamus OEPP/EPPO. Bulletin 26:199–249Google Scholar
  24. Facon B, Pointier JP, Glaubrecht M, Poux C, Jarne P, David P (2003) A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Mol Ecol 12:3027–3039. doi: 10.1046/j.1365-294X.2003.01972.x CrossRefPubMedGoogle Scholar
  25. Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135. doi: 10.1016/j.tree.2005.10.012 CrossRefPubMedGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  27. Figueiredo J et al (2013) Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes. PLoS One 8:e83542. doi: 10.1371/journal.pone.0083542 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253. doi: 10.1007/s10530-011-0064-1 CrossRefGoogle Scholar
  29. Fonseca L et al (2012) The pinewood nematode, Bursaphelenchus xylophilus, in Madeira Island. Helminthologia 49:96–103CrossRefGoogle Scholar
  30. Fontaine MC, Gladieux P, Hood ME, Giraud T (2013) History of the invasion of the anther smut pathogen on Silene latifolia in North America. New Phytol 198:946–956. doi: 10.1111/nph.12177 CrossRefPubMedGoogle Scholar
  31. Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385. doi: 10.1038/sj.hdy.6800634
  32. Futai K (2013) Pinewood nematode, Bursaphelenchus xylophilus. Annu Rev Phytopathol 51:61–83CrossRefPubMedGoogle Scholar
  33. Goudet J (2002) Fstat, a program to estimate and test gene diversities and fixation indices.
  34. Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99. doi: 10.1038/hdy.2009.92 CrossRefPubMedGoogle Scholar
  35. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  36. Kelager A, Pedersen J, Bruun H (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141. doi: 10.1007/s10530-012-0356-0 CrossRefGoogle Scholar
  37. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866CrossRefPubMedGoogle Scholar
  38. Kiritani K, Morimoto N (2004) Invasive insect and nematode pests from North America. Glob Environ Res 8:75–88Google Scholar
  39. Kobayashi F, Yamane A, Ikeda T (1984) The japanese pine sawyer beetle as the vector of pine wilt disease. Annu Rev Entomol 29:115–135CrossRefGoogle Scholar
  40. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181. doi: 10.1038/nature02807 CrossRefPubMedGoogle Scholar
  41. Linit MJ (1988) Nematode–vector relationships in the pine wilt disease system. J Nematol 20:227–235PubMedCentralPubMedGoogle Scholar
  42. Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  43. Mallez S, Castagnone C, Espada M, Vieira P, Eisenback JD, Mota M, Guillemaud T, Castagnone-Sereno P (2013) First insights into the genetic diversity of the pinewood nematode in its native area using new polymorphic microsatellite loci. PLoS One 8:e59165. doi: 10.1371/journal.pone.0059165
  44. Mamiya Y (1972) Pine wood nematode Bursaphelenchus lignicolus Mamiya and Kiyohara, as a causal agent of pine wilting disease. Rev Plant Protect Res 5:46–60Google Scholar
  45. Mamiya Y (1975) The life history of the pine wood nematode, Bursaphelenchus lignicolus. Jpn J Nematol 5:16–25Google Scholar
  46. Mamiya Y (1976) Pine wilt disease caused by the pine wood nematode, Bursaphelenchus lignicolus, in Japan. Jpn Agric Res Q 10:206–211Google Scholar
  47. Mamiya Y (1983) Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annu Rev Phytopathol 21:201–220. doi: 10.1146/ CrossRefGoogle Scholar
  48. Mamiya Y (1988) History of pine wilt disease in Japan. J Nematol 20:219–226PubMedCentralPubMedGoogle Scholar
  49. Mamiya Y (2004) Pine wilt disease in Japan. In: Mota M, Vieira P (eds) The pinewood nematode, Bursaphelenchus xylophilus. Brill Academic, Leiden, pp 9–20Google Scholar
  50. Mamiya Y, Enda N (1972) Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae). Nematologica 18:159–162CrossRefGoogle Scholar
  51. Metge K, Burgermeister W (2008) Analysis of Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae) provenances using ISSR and RAPD fingerprints. In: Mota M, Vieira P (eds) Pine wilt disease: a worldwide threat to forest ecosystems. Springer, New York, pp 175–186. doi: 10.1007/978-1-4020-8455-3_15 CrossRefGoogle Scholar
  52. Moon YS, Cheon HM, Lee S (2007) Occurence of pine wilt disease, caused by Bursaphelenchus xylophilus, from Pinus koraiensis in Korea. J Nematol 39:87–88Google Scholar
  53. Mota M, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–734CrossRefGoogle Scholar
  54. Naves PM, Camacho S, de Sousa EM, Quartau JA (2007) Transmission of the pine wood nematode Bursaphelenchus xylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). J Appl Entomol 131:21–25. doi: 10.1111/j.1439-0418.2006.01111.x CrossRefGoogle Scholar
  55. OEPP/EPPO (1997) Fiche informative sur les organismes de quarantaine: Bursaphelenchus xylophilus no 158 OEPP/EPPO Bulletin 1–12Google Scholar
  56. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi: 10.1046/j.1365-294X.2004.02008.x CrossRefPubMedGoogle Scholar
  57. Papura D, Burban C, van Helden M, Giresse X, Nusillard B, Guillemaud T, Kerdelhué C (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the Neartic leafhopper Scaphoideus titanus in Europe. PLoS One 7:e36882. doi: 10.1371/journal.pone.0036882 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Pascual M et al (2007) Introduction history of Drosophila subobscura in the New World: a microsatellite-based survey using ABC methods. Mol Ecol 16:3069–3083CrossRefPubMedGoogle Scholar
  59. Perdereau E, Bagnères AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo EL, Dedeine F (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119. doi: 10.1111/mec.12140 CrossRefPubMedGoogle Scholar
  60. Pereira F, Moreira C, Fonseca L, van Asch B, Mota M, Abrantes I, Amorim A (2013) New insights into the phylogeny and worldwide dispersion of two closely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. PLoS One 8. doi: 10.1371/journal.pone.0056288
  61. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi: 10.1093/jhered/esh074 CrossRefPubMedGoogle Scholar
  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  63. Puth LM, Post DM (2005) Studying invasion: have we missed the boat? Ecol Lett 8:715–721. doi: 10.1111/j.1461-0248.2005.00774.x CrossRefGoogle Scholar
  64. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201CrossRefPubMedCentralPubMedGoogle Scholar
  65. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283. doi: 10.2307/2410454 CrossRefGoogle Scholar
  66. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103. doi: 10.1111/j.0014-3820.2001.tb00629.x CrossRefPubMedGoogle Scholar
  67. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi: 10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  68. Robertson L, Cobacho Arcos S, Escuer M, Santiago Merino R, Esparrago G, Abelleira A, Navas A (2011) Incidence of the pinewood nematode Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 13:755–757CrossRefGoogle Scholar
  69. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefPubMedGoogle Scholar
  70. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  71. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedCentralPubMedGoogle Scholar
  72. Rousset F (2008) GENEPOP′ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  73. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  74. Sakai AK et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi: 10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  75. Shibata E (1986) Dispersal movement of the adult Japanese pine sawyer, Monochamus alternatus hope (Coleoptera, Cerambycidae) in a young pine forest. Appl Entomol Zool 21:184–186Google Scholar
  76. Simberloff D et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefGoogle Scholar
  77. Sokal RR, Rohlf FJ (1995) Biometry The principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York, pp 236–242Google Scholar
  78. Soliman T, Mourits MCM, van der Werf W, Hengeveld GM, Robinet C, Lansink A (2012) Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS One 7. doi: 10.1371/journal.pone.0045505
  79. Sousa E, Bravo MA, Pires J, Naves P, Penas AC, Bonifacio L, Mota MM (2001) Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematology 3:89–91. doi: 10.1163/156854101300106937 CrossRefGoogle Scholar
  80. Steiner G, Buhrer EM (1934) Aphelenchoides xylophilus, N. SP. A nematode associated with blue-stain and other fungi in timber. J Agric Res 48:949–951Google Scholar
  81. Strong DR, Pemberton RW (2000) Biological control of invading species-risk and reform. Science 288:1969–1970. doi: 10.1126/science.288.5473.1969 CrossRefPubMedGoogle Scholar
  82. Suzuki K (2002) Pine wilt disease—a threat to pine forest in Europe. Dendrobiology 48:71–74Google Scholar
  83. Tares S, Abad P, Bruguier N, de Guiran G (1992) Identification and evidence for relationships among geographical isolates of Bursaphelenchus spp. (pinewood nematode) using homologous DNA probes. Heredity 68:157–164CrossRefGoogle Scholar
  84. Togashi K (1985) Transmission curves of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) from its vector, Monochamus alternatus (Coleoptera: Cerambycidae), to pine trees with reference to population performnce. Appl Entomol Zool 20:246–251Google Scholar
  85. Togashi K (1990) A field experiment on dispersal of newly emerged adults of Monochamus alternatus (Coleoptera: Cerambycidae). Res Popul Ecol 32:1–13CrossRefGoogle Scholar
  86. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953. doi: 10.1073/pnas.100110397 CrossRefPubMedCentralPubMedGoogle Scholar
  87. Valadas V, Barbosa P, Espada M, Oliveira S, Mota M (2012a) The pinewood nematode, Bursaphelenchus xylophilus, in Portugal: possible introductions and spread routes of a serious biological invasion revealed by molecular methods. Nematology 00:1–13Google Scholar
  88. Valadas V, Laranjo M, Mota M, Oliveira S (2012a) Molecular characterization of Portuguese populations of the pinewood nematode Bursaphelenchus xylophilus using cytochrome b and cellulase genes. J Helminthol. doi: 10.1017/S0022149X12000673
  89. van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52:531–540. doi: 10.1007/s00267-013-0099-4 CrossRefGoogle Scholar
  90. Vicente C, Espada M, Vieira P, Mota M (2011) Pine wilt disease: a threat to European forestry. Eur J Plant Pathol. doi: 10.1007/s10658-011-9924-x
  91. Vieira P, Burgermeister W, Mota M, Metge K, Silva G (2007) Lack of genetic variation of Bursaphelenchus xylophilus in Portugal revealed by RAPD-PCR analyses. J Nematol 39:118–126PubMedCentralPubMedGoogle Scholar
  92. Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples: Baermann funnel modifications. J Nematol 15:438–444PubMedCentralPubMedGoogle Scholar
  93. Vincent B, Altemayer V, Roux-Morabito G, Naves P, Sousa E, Lieutier F (2008) Competitive interaction between Bursaphelenchus xylophilus and the closely related species Bursaphelenchus mucronatus. Nematology 10:219–230. doi: 10.1163/156854108783476403 CrossRefGoogle Scholar
  94. Wan XW, Liu YH, Zhang B (2012) Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia Region: two main invasion routes. PLoS One 7. doi: 10.1371/journal.pone.0036176
  95. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  96. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458. doi: 10.1146/annurev.ecolsys.37.091305.110145 CrossRefGoogle Scholar
  97. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. doi: 10.1016/j.tree.2008.10.007 CrossRefPubMedGoogle Scholar
  98. Wingfield MJ, Blanchette RA, Nicholls TH, Robbins K (1982) The pine wood nematode: a comparison of the situation in the United States and Japan. Can J For Res 12:71–75. doi: 10.1139/x82-010 CrossRefGoogle Scholar
  99. Yoder M et al (2006) DESS : a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376CrossRefGoogle Scholar
  100. Zepeda-Paulo FA et al (2010) The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Ecol 19:4738–4752. doi: 10.1111/j.1365-294X.2010.04857.x CrossRefPubMedGoogle Scholar
  101. Zhang K et al (2008) Molecular phylogeny of geographical isolates of Bursaphelenchus xylophilus: implications on the origin and spread of this species in China and worldwide. J Nematol 40:127–137PubMedCentralPubMedGoogle Scholar
  102. Zhou ZH, Sakaue D, Wu BY, Hogetsu T (2007) Genetic structure of populations of the pinewood nematode Bursaphelenchus xylophilus, the pathogen of pine wilt disease, between and within pine forests. Phytopathology 97:304–310. doi: 10.1094/phyto-97-3-0304 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sophie Mallez
    • 1
    • 2
    • 3
    Email author
  • Chantal Castagnone
    • 1
    • 2
    • 3
  • Margarida Espada
    • 4
  • Paulo Vieira
    • 4
  • Jonathan D. Eisenback
    • 5
  • Mark Harrell
    • 6
  • Manuel Mota
    • 4
  • Takuya Aikawa
    • 7
  • Mitsuteru Akiba
    • 8
  • Hajime Kosaka
    • 9
  • Philippe Castagnone-Sereno
    • 1
    • 2
    • 3
  • Thomas Guillemaud
    • 1
    • 2
    • 3
  1. 1.UMR 1355 Institut Sophia AgrobiotechINRASophia AntipolisFrance
  2. 2.UMR Institut Sophia AgrobiotechUniversité de Nice Sophia AntipolisSophia Antipolis CedexFrance
  3. 3.UMR 7254 Institut Sophia AgrobiotechCNRSSophia Antipolis CedexFrance
  4. 4.NemaLab/ICAAM – Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  5. 5.Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgUSA
  6. 6.Nebraska Forest ServiceUniversity of NebraskaLincolnUSA
  7. 7.Tohoku Research CenterForestry and Forest Products Research InstituteMoriokaJapan
  8. 8.Forest Pathology LaboratoryForestry and Forest Products Research InstituteTsukubaJapan
  9. 9.Kyushu Research CenterForestry and Forest Products Research InstituteKumamotoJapan

Personalised recommendations