Advertisement

Biological Invasions

, Volume 17, Issue 1, pp 273–285 | Cite as

Modelling the risk of invasion by the red-swamp crayfish (Procambarus clarkii): incorporating local variables to better inform management decisions

  • Francisco D. Moreira
  • Fernando Ascensão
  • César Capinha
  • Diana Rodrigues
  • Pedro Segurado
  • Margarida Santos-Reis
  • Rui Rebelo
Original Paper

Abstract

The correct modelling of the potential distribution of an invasive species is crucial to define effective management and monitoring strategies. Here we compared the results of models built at different spatial scales to identify the areas at risk of invasion by the red swamp crayfish (Procambarus clarkii) in the northwest of Portugal. Firstly, we surveyed crayfish at 97 locations. Secondly, we used presence–absence data and local variables to model its current distribution (local variables model) and identified slope and river width as the best explanatory factors. Thirdly, we integrated these two local variables into a former model built for the Iberian Peninsula (regional model) increasing considerably its predictive power. Finally, we compared both models focusing on the area predicted to be invaded. The local model showed a considerably narrower extent of suitable areas for crayfish in the study area than the regional model. These results show that the refinement of regional scale predictions through the incorporation of species-environment relationships at local scales may be important for supporting management decisions. By not integrating the effects of local variability, regional bioclimatic models may overlook the potential distribution of this invader at manageable extents. Results further suggest that a wide range of native ecosystems of conservation value are probably unsuitable for this invasive species.

Keywords

Biological invasions Red swamp crayfish Risk assessment Spatial Scale Species distribution models 

Notes

Acknowledgments

This study was financed by FCT—Fundação para a Ciência e Tecnologia (Portugal) through project DILEMA—Alien species and conservation dilemmas: the effects of native competitors and alien prey species on the spread of American mink in Portugal (PTDC/BIA-BECD/102433/2008). The authors would like to thank the staff at “Paisagem Protegida da Lagoa de Bertiandos e S. Pedro d’Arcos” for logistic support and everyone involved in the fieldwork. The authors would also like to thank G.F. Ficetola and an anonymous reviewer for their overall contribution and consequent improvement of the manuscript.

References

  1. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284CrossRefGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  3. Angeler DG, Sanchez-Carillo S, Garca G, Alvarez-Cobelas M (2001) The influence of Procambarus clarkii (Decapoda: Cambaridae) on water quality and sediment characteristics in Spanish floodplain wetland. Hydrobiologia 464:89–98CrossRefGoogle Scholar
  4. Banha F, Anastácio PM (2011) Interactions between invasive crayfish and native river shrimp. Knowl Manag Aquat Ecosyst 401(17):1–12Google Scholar
  5. Bartoń K (2009) Bivand: multi-model inference. R package, version 1.7.2. http://r-forge.r-project.org/projects/mumin/
  6. Bernardo JM, Costa AM, Bruxelas S, Teixeira A (2011) Dispersal and coexistence of two non-native crayfish species (Pacifastacus leniusculus and Procambaru clarkii) in NE Portugal over a 10-year period. Knowl Manag Aquat Ecosyst 401:28CrossRefGoogle Scholar
  7. Bivand R (2007) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-43. http://r-forge.r-project.org/projects/spdep/
  8. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304CrossRefGoogle Scholar
  9. Cairns A, Yan N (2009) A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environ Rev 17:67–79CrossRefGoogle Scholar
  10. Capinha C, Anastácio P (2011) Assessing the environmental requirements of invaders using ensembles of distribution models. Divers Distrib 17:13–24CrossRefGoogle Scholar
  11. Capinha C, Brotons L, Anastácio P (2013) Geographical variability in propagule pressure and climatic suitability explain the European distribution of two highly invasive crayfish. J Biogeogr 40:548–558CrossRefGoogle Scholar
  12. Carreira BM, Dias MP, Rebelo R (2013) How consumption and fragmentation of macrophytes by the invasive crayfish Procambarus clarkii shape the macrophyte communities of temporary ponds. Hydrobiologia 721:89–98CrossRefGoogle Scholar
  13. Correia AM (2001) Seasonal and interspecific evaluation of predation by mammals and birds on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal). J Zool 255(4):533–541CrossRefGoogle Scholar
  14. Correia AM (2003) Food choice by the introduced crayfish Procambarus clarkii. Ann Zool Fenn 40:517–528Google Scholar
  15. Correia AM, Anastácio PM (2008) Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecol Res 23:729–734CrossRefGoogle Scholar
  16. Correia AM, Ferreira O (1995) Burrowing behavior of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. J Crustacean Biol 15:248–257CrossRefGoogle Scholar
  17. Craney TA, Surles JG (2002) Model-dependent variance inflation factor cutoff values. Qual Eng 14(3):391–403CrossRefGoogle Scholar
  18. Cruz MJ, Rebelo R (2007) Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii, in Southwest Iberian Peninsula. Hydrobiologia 575:191–201CrossRefGoogle Scholar
  19. Cruz MJ, Rebelo R, Crespo EG (2006) Effects of an introduced crayfish, Procambarus clarkii, on the distribution of south-western Iberian amphibians in their breeding habitats. Ecography 29:329–338CrossRefGoogle Scholar
  20. Cruz MJ, Segurado P, Sousa M, Rebelo R (2008) Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. Herpetol J 18:197–204Google Scholar
  21. Dana ED, Garcia-de-Lomas J, Gonzalez R, Ortega F (2011) Effectiveness of dam construction to contain the invasive crayfish Procambarus clarkii in a Mediterranean mountain stream. Ecol Eng 37:1607–1613CrossRefGoogle Scholar
  22. Favaro L, Tirelli T, Pessani D (2010) The role of water chemistry in the distribution of Austropotamobius pallipes (Crustacea Decapoda Astacidae) in Piedmont (Italy). C R Biol 333:68–75PubMedCrossRefGoogle Scholar
  23. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485CrossRefGoogle Scholar
  24. Ficetola GF, Siesa ME, Manenti R, Bottoni L, De Bernardi F, Padoa-Schioppa E (2011) Early assessment of the impact of alien species: differential consequences of an invasive crayfish on adult and larval amphibians. Divers Distrib 17:1141–1151CrossRefGoogle Scholar
  25. Ficetola GF, Siesa ME, De Bernardi F, Padoa-Schioppa E (2012) Complex impact of an invasive crayfish on freshwater food webs. Biodivers Conserv 21:2641–2651CrossRefGoogle Scholar
  26. Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136CrossRefGoogle Scholar
  27. Geiger W, Alcorlo P, Baltanás A, Montes C (2005) Impact of an introduced crustacean on the trophic webs of Mediterranean wetlands. Biol Invasions 7:49–73CrossRefGoogle Scholar
  28. Gherardi F (2006) Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39:175–191CrossRefGoogle Scholar
  29. Gherardi F, Barbaresi S, Salvi G (2000) Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquat Sci 62:179–193Google Scholar
  30. Gil-Sánchez JM, Alba-Tercedor J (2002) Ecology of the native and introduced crayfishes Austropotamobius pallipes and Procambarus clarkii in southern Spain and implications for conservation of the native species. Biol Conserv 105:75–80CrossRefGoogle Scholar
  31. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  32. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  33. Gutiérrez-Yurrita PJ, Sancho G, Bravo MA, Baltanás A, Montes C (1998) Diet of the red swamp crayfish Procambarus clarkii in natural ecosystems of the Doñana National Park temporary freshwater marsh (Spain). J Crustacean Biol 18(1):120–127CrossRefGoogle Scholar
  34. Hines JE (2006) PRESENCE—Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html
  35. Kerby JL, Riley SPD, Kats LB, Wilson P (2005) Barriers and flow as limiting factors in the spread of an invasive crayfish (Procambarus clarkii) in southern California streams. Biol Conserv 126:402–409CrossRefGoogle Scholar
  36. Loo SE, Nally RM, O’Dowd DJ, Thomson JR, Lake PS (2009) Multiple scale analysis of factors influencing the distribution of an invasive aquatic grass. Biol Invasions 11:1903–1912CrossRefGoogle Scholar
  37. Maceda-Veiga A, De Sostoa A, Sánchez-Espada S (2013) Factors affecting the establishment of the invasive crayfish Procambarus clarkii (Crustacea, Decapoda) in the Mediterranean rivers of the northeastern Iberian Peninsula. Hydrobiologia 703:33–45CrossRefGoogle Scholar
  38. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm A (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255CrossRefGoogle Scholar
  39. Moreira F (2011) Propagação de um invasor: passado, presente e futuro de P. clarkii no noroeste de Portugal. MSc Dissertation. University of LisbonGoogle Scholar
  40. Nunes AL, Cruz MJ, Tejedo M, Laurila A, Rebelo R (2010) Nonlethal injury caused by an invasive alien predator and its consequences for an anuran tadpole. Basic Appl Ecol 11(7):645–654CrossRefGoogle Scholar
  41. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  42. Ramos MA, Pereira TM (1981) Um novo Astacidae para a fauna portuguesa: Procambarus clarkii (Girard, 1852). Bol Inst Nac Invest Pescas 6:37–47Google Scholar
  43. Reino L, Beja P, Araújo MB, Dray S, Segurado P (2013) Does local habitat fragmentation affect large-scale distributions? The case of a specialist grassland bird. Divers Distrib 19(4):423–432CrossRefGoogle Scholar
  44. Richards SA (2005) Testing ecological theory using the Information-Theoretic approach: examples and cautionary results. Ecology 86(10):2805–2814CrossRefGoogle Scholar
  45. Richards SA, Whittingham MJ, Stephens PA (2011) Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav Ecol Sociobiol 65:77–89CrossRefGoogle Scholar
  46. Rodrigues D, Simões L, Mullins J, Lampa S, Mendes RC, Fernandes C, Rebelo R, Santos-Reis M (2014) Tracking the expansion of the American mink (Neovison vison) range in NW Portugal. Biol Invasions. doi: 10.1007/s10530-014-0706-1 Google Scholar
  47. Rosewarne P, Wright RM, Dunn AM (2013) Do low-head riverine structures hinder the spread of invasive crayfish? Case study of signal crayfish (Pacifastacus leniusculus) movements at a flow gauging weir. Manag Biol Inv 4(4):273–282Google Scholar
  48. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NLR, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  49. Siesa ME, Manenti R, Padoa-Schioppa E, De Bernardi F, Ficetola GF (2011) Spatial autocorrelation and the analysis of invasion processes from distribution data: a study with the crayfish Procambarus clarkii. Biol Invasions 13:2147–2160CrossRefGoogle Scholar
  50. Vaclavik R, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18(1):73–83CrossRefGoogle Scholar
  51. Vié J, Hilton-Taylor C, Stuart SN (2009) Wildlife in a changing world: An analysis of the 2008 IUCN red list of threatened species 1-184. IUCNGoogle Scholar
  52. Vogt J, Soille P, De Jager A, Rimaviciute E, Mehl W, Foisneau S, Bodis K, Dusart J, Paracchini ML, Haastrup P (2007) A pan-European River and Catchment Database. JRC Reference ReportsGoogle Scholar
  53. Wearne LJ, Ko D, Hannan-Jones M, Calvert M (2013) Potential distribution and risk assessment of an invasive plant species: a case study of Hymenachne amplexicaulis in Australia. Hum Ecol Risk Assess Int J 19:53–79CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco D. Moreira
    • 1
  • Fernando Ascensão
    • 1
  • César Capinha
    • 1
  • Diana Rodrigues
    • 1
  • Pedro Segurado
    • 2
  • Margarida Santos-Reis
    • 3
  • Rui Rebelo
    • 3
  1. 1.Centro de Biologia AmbientalFaculdade de Ciências, Universidade de LisboaLisbonPortugal
  2. 2.Centro de Estudos FlorestaisUniversidade Técnica de LisboaLisbonPortugal
  3. 3.Centro de Biologia Ambiental, Departamento de Biologia AnimalFaculdade de Ciências, Universidade de LisboaLisbonPortugal

Personalised recommendations