Skip to main content

Invasive cordgrass facilitates epifaunal communities in a Chinese marsh

Abstract

Structural aspects of the environment frequently influence the taxonomic and functional diversity of associated ecological communities. Spartina alterniflora and Phragmites australis both are structure-forming species in salt marshes but reciprocal invaders. Epifaunal communities on invasive Phragmites on the east coast of North America are reduced relative to native Spartina. But, the impacts of invasive Spartina on epiphytic communities in Phragmites dominated marshes in the Western Pacific are unknown. We examined epifauna on live and dead stems of invasive S. alterniflora and native P. australis in the Yangtze River estuary in China. Epiphytic invertebrate abundance on S. alterniflora was ~5× greater than on P. australis, suggesting that S. alterniflora supports more abundant epiphytic communities than P. australis, irrespective of region. For both live and dead stems, most epifaunal groups, including Namatoda, Copepoda, Halacarida and Oligochaeta, were more abundant on S. alterniflora than P. australis. Enhanced epifaunal abundance could benefit the nursery function of marshes by increasing secondary production. Dead S. alterniflora were the best habitat for nematodes, especially bacterivores and fungivores. This suggests that differences in litter quality may be important in these nematode communities and that more active biological processes may occur on Spartina influencing nutrient cycling rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alkemade R, Wielemaker A, Herman PMJ, Hemminga MA (1994) Population dynamics of Diplolaimelloides brucei, a nematode associated with the salt marsh plant Spartina anglica. Mar Ecol Prog Ser 105:277–284. doi:10.3354/meps105277

    Article  Google Scholar 

  • Alves AS, Adão H, Ferrero TJ, Marques JC, Costa MJ, Patrício J (2013) Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecol Indic 24:462–475. doi:10.1016/j.ecolind.2012.07.013

    Article  Google Scholar 

  • An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Res 47:183–191. doi:10.1111/j.1365-3180.2007.00559.x

    Article  Google Scholar 

  • Brusati ED, Grosholz ED (2009) Does invasion of hybrid cordgrass change estuarine food webs? Biol Invasions 11:917–926. doi:10.1007/s10530-008-9304-4

    Article  Google Scholar 

  • Byers JE, Gribben PE, Yeager C, Sotka EE (2012) Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol Invasions 14:2587–2600. doi:10.1007/s10530-012-0254-5

    Article  Google Scholar 

  • Chen HL, Li B, Hu JB, Chen JK, Wu JH (2007a) Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary. Mar Ecol Prog Ser 336:99–110. doi:10.3354/meps336099

    Article  Google Scholar 

  • Chen HL, Li B, Fang CM, Chen JK, Wu JH (2007b) Exotic plant influences soil nematode communities through litter input. Soil Biol Biochem 39:1782–1793. doi:10.1016/j.soilbio.2007.02.011

    Article  CAS  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Coleman DC (1985) The role of microfloral and faunal interactions in affecting soil processes. In: Mitchell MJ et al (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Springer, Netherlands, pp 317–348

    Google Scholar 

  • Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar Ecol Prog Ser 121:99–116. doi:10.3354/meps121099

    Article  Google Scholar 

  • Davies J, Baxter J, Bradley M, David C, Khan J, Murray E, Sanderson W, Turnbull C, Vincent M (2001) Marine monitoring handbook. Joint Nature Conservation Committee, Peterborough

    Google Scholar 

  • De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744. doi:10.1111/j.1462-2920.2004.00610.x

    Article  PubMed  Google Scholar 

  • Ferreiro N, Feijoó C, Giorgi A, Leggieri L (2011) Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664:199–211. doi:10.1111/j.1462-2920.2004.00610.x

    Article  Google Scholar 

  • Fontanarrosa MS, Chaparro GN, O’Farrell I (2013) Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33:47–63. doi:10.1007/s13157-012-0351-3

    Article  Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141. doi:10.1146/annurev.marine.010908.163930

    Article  Google Scholar 

  • Gregg CS, Fleeger JW (1998) Grass shrimp Palaemonetes pugio predation on sediment- and stem-dwelling meiofauna: field and laboratory experiments. Mar Ecol Prog Ser 175:77–86. doi:10.3354/meps175077

    Article  Google Scholar 

  • Gribben PE, Byers JE, Wright JT, Glasby TM (2013) Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem. Oikos 122:816–824. doi:10.1111/j.1600-0706.2012.20868.x

    Article  Google Scholar 

  • Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi:10.1016/S0169-5347(01)02358-8

    Article  Google Scholar 

  • Jaschinski S, Brepohl DC, Sommer U (2011) The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquat Sci 73:91–101. doi:10.1007/s00027-010-0163-6

    Article  CAS  Google Scholar 

  • Kuehn KA, Steiner D, Gessner MO (2004) Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85:2504–2518. doi:10.1890/03-4082

    Article  Google Scholar 

  • Lau JA (2013) Trophic consequences of a biological invasion: do plant invasions increase predator abundance? Oikos 122:474–480. doi:10.1111/j.1600-0706.2012.20774.x

    Article  Google Scholar 

  • Lewis LS, Anderson TW (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecology 93:2746–2757. doi:10.1890/12-0038.1

    Article  PubMed  Google Scholar 

  • Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520. doi:10.1016/j.ecoleng.2008.05.013

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–1361. doi:10.1007/s10021-007-9103-2

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600. doi:10.1007/s00442-008-1007-0

    Article  PubMed  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. doi:10.4319/lo.1967.12.2.0343

    Article  CAS  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201. doi:10.2307/1352224

    Article  Google Scholar 

  • Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212. doi:10.2307/1352225

    Article  Google Scholar 

  • Moore JC, de Ruiter PC (1991) Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agric Ecosyst Environ 34:371–397. doi:10.1016/0167-8809(91)90122-E

    Article  Google Scholar 

  • Odum EP (2002) Tidal marshes as outwelling/pulsing system. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 3–8

    Chapter  Google Scholar 

  • Palmer MA (1986) Hydrodynamics and structure: interactive effects on meiofauna dispersal. J Exp Mar Biol Ecol 104:53–68. doi:10.1016/0022-0981(86)90097-3

    Article  Google Scholar 

  • Robertson TL, Weis JS (2005) A comparison of epifaunal communities associated with the stems of salt marsh grasses Phragmites australis and Spartina alterniflora. Wetlands 25:1–7. doi:10.1672/0277-5212(2005)025%5B0001:ACOECA%5D2.0.CO;2

    Article  Google Scholar 

  • Rutledge PA, Fleeger JW (1993) Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with stems of the salt-marsh cord grass, Spartina alterniflora. Estuaries 16:760–768. doi:10.2307/1352434

    Article  Google Scholar 

  • Sanmartí N, Menéndez M (2007) Litter decomposition of Scirpus maritimus L. in a Mediterranean coastal marsh: importance of the meiofauna during the initial phases of detached leaves decomposition. Int Rev Hydrobiol 92:211–226. doi:10.1002/iroh.200510955

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York

  • Vázquez-Luis M, Sánchez-Jerez P, Bayle-Sempere JT (2013) Does the invasion of Caulerpa racemosa var. cylindracea affect the feeding habits of amphipods (Crustacea: Amphipoda)? J Mar Biol Assoc UK 93:87–94. doi:10.1017/S0025315412000288

    Article  Google Scholar 

  • Walters K, Jones E, Etherington L (1996) Experimental studies of predation on metazoans inhabiting Spartina alterniflora stems. J Exp Mar Biol Ecol 195:251–265. doi:10.1016/0022-0981(95)00103-4

    Article  Google Scholar 

  • Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Bo L (2006) Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxon Sin 44(5):559–588. doi:10.1360/aps06044

    Article  Google Scholar 

  • Weis JS, Weis P (2003) Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Mar Pollut Bull 46:816–820. doi:10.1016/S0025-326X(03)00036-5

    Article  CAS  PubMed  Google Scholar 

  • Whalen MA, Duffy JE, Grace JB (2013) Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94:510–520. doi:10.1890/12-0156.1

    Article  PubMed  Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H (2001) Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. J Exp Mar Biol Ecol 256:99–121. doi:10.1016/S0022-0981(00)00310-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Science and Technology Ministry (2013CB430404), NSFC fund (30930019, 41371258, 41201054). We are grateful to Deborah Neher and Mark Bertness for constructive advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Wu.

Appendix

Appendix

See Table 4.

Table 4 Epiphytic nematodes associated with standing live and dead stem material for P. australis (abbreviated as ‘PA’) S. alterniflora (abbreviated as ‘SA’) at each sampling time

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, P., Li, B. et al. Invasive cordgrass facilitates epifaunal communities in a Chinese marsh. Biol Invasions 17, 205–217 (2015). https://doi.org/10.1007/s10530-014-0720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0720-3

Keywords

  • Epiphytic invertebrates
  • Nematode
  • Phragmites australis
  • Salt marsh
  • Trophic group