Skip to main content

Advertisement

Log in

Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species are spreading at high rates, yet fundamental processes allowing them to progress through the stages of invasion are unclear. The establishment stage is a critical point because this is when exotic species can survive, reproduce, and begin to spread. Unfortunately, inference of population dynamics during this stage may be impossible if historical and observational data are incomplete. Nonetheless, critical inferences on population dynamics during the establishment stage can be acquired indirectly by characterizing demographic history via the population genetics of recently introduced populations. Geckos have been introduced at a global scale and are one of the most successfully establishing families of alien reptile known. Here we conduct a series of population genetic analyses among five close subpopulations of the introduced Mediterranean gecko Hemidactylus turcicus. We tested for non-equilibrium genetic signatures, a pattern expected during early stages of invasion if there were few founders or repeated introductions led to population turnover. Genetic analyses showed no evidence of non-equilibrium dynamics such as genetic bottlenecks. Moreover, we found strong support for population genetic equilibrium dynamics. The observed results may have been generated via an introduction that involved high propagule pressure. However, given the life history of H. turcicus including generation time and dispersal potential, we favor the hypothesis that the invasive metapopulation has rapidly reached the establishment stage as indicated by relatively constant effective sizes and migration rates among introduced subpopulations. The ability to rapidly pass through the establishment stage may in part explain the invasion success of these geckos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford

    Google Scholar 

  • Beerli P (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In: Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernesi C (eds) Population genetics for animal conservation. Cambridge University Press, Cambridge, pp 42–79

    Google Scholar 

  • Beerli P (2013) Migrate-N version 3.6: estimation of population sizes and gene flow using the coalescent. http://popgen.sc.fsu.edu/Migrate/Migrate-n.html

  • Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Bomford M, Kraus F, Barry SC, Lawrence E (2009) Predicting establishment success for alien reptiles and amphibians: a role of climate matching. Biol Invasions 11:713–724

    Article  Google Scholar 

  • Carranza S, Arnold EN (2006) Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol Phylogenet Evol 38:531–545

    Article  CAS  PubMed  Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond B Biol Sci 266:2269–2274

    Article  Google Scholar 

  • Conant R (1955) Notes on three Texas reptiles, including an addition to the fauna of the state. Am Mus Novit 1726:1–6

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Detwiler JT, Criscione CD (2011) Testing Mendelian inheritance from field-collected parasites: revealing duplicated loci enables correct inference of reproductive mode and mating system. Int J Parasitol 41:1185–1195

    Article  PubMed  Google Scholar 

  • Etheridge RE (1952) The Warty Gecko, Hemidactylus turcicus turcicus (Linnaeus), in New Orleans, Louisiana. Copeia 1952:47–48

    Article  Google Scholar 

  • Fauvergue X, Vercken E, Malausa T, Hufbauer RA (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443

    Article  PubMed Central  PubMed  Google Scholar 

  • Fowler HW (1915) Cold-blooded vertebrates from Florida, the West Indies, Costa Rica, and eastern Brazil. Proc Acad Nat Sci Phila 67:244–269

    Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res Camb 66:95–107

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Handley LJL, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428

    Article  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, San Diego

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Google Scholar 

  • Jones OR, Wang JL (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Koenig WD, VanVuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  CAS  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kraus F (2009) Alien reptiles and amphibians: a scientific compendium and analysis. Springer, Dordrecht

    Book  Google Scholar 

  • Loader C (1999) Local regression and likelihood. Springer, New York

    Google Scholar 

  • Locey KJ, Stone PA (2006) Factors affecting range expansion in the introduced Mediterranean Gecko, Hemidactylus turcicus. J Herpetol 40:526–530

    Article  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402

    Article  PubMed  Google Scholar 

  • Meshaka WE, Marshall SD, Boundy J, Williams AA (2006) Status and geographic expansion of the Mediterranean Gecko, Hemidactylus turcicus, in Louisiana: implications for the southeastern United States. Herpetol Conserv Biol 1:45–50

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Owusu KA, Detwiler JT, Criscione CD (2012) Characterization of 21 microsatellite loci from the invasive Mediterranean gecko (Hemidactylus turcicus). Conserv Genet Res 4:563–565

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetics assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18:674–687

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rose FL, Barbour CD (1968) Ecology and reproductive cycles of the introduced gecko, Hemidactylus turcicus, in the Southern United States. Am Midl Nat 79:159–168

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schwaner T, DeVries A, Budge D, Schwaner D (2008) Genetic variation in founder populations of the Mediterranean gecko, Hemidactylus turcicus, across the southern United States. Amphib-Reptil 29:438–442

    Article  Google Scholar 

  • Selcer KW (1986) Life history of a successful colonizer: the Mediterranean Gecko, Hemidactylus turcicus, in southern Texas. Copeia 4:956–962

    Article  Google Scholar 

  • Short KH, Petren K (2011a) Multimodal dispersal during the range expansion of the tropical house gecko Hemidactylus mabouia. Ecol Evol 1:181–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Short KH, Petren K (2011b) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 6:e26258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stabler LB, Johnson WL, Locey KJ, Stone PA (2012) A comparison of Mediterranean Gecko (Hemidactylus turcicus) populations in two temperate zone urban habitats. Urb Ecosyst 15:653–666

    Article  Google Scholar 

  • Stejneger L (1922) Two geckos new to the fauna of the United States. Copeia 1922:56

    Google Scholar 

  • Trout L, Schwaner TD (1994) Allozyme evidence for insularity in exotic populations of the Mediterranean gecko (Hemidactylus turcicus). J Herpetol 28:391–393

    Article  Google Scholar 

  • Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Change Biol 17:3478–3485

    Article  Google Scholar 

  • Wang JL (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164

    Article  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RC, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed Central  Google Scholar 

  • Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633–644

    Article  PubMed Central  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matthew Gasner and Emily Kasl for assistance with gecko sampling. Erika Medina aided in field collections, DNA extraction, and microsatellite genotyping as an undergraduate fellow with the Louis Stokes Alliances for Minority Participation (LSAMP) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian T. Detwiler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detwiler, J.T., Criscione, C.D. Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics. Biol Invasions 16, 2653–2667 (2014). https://doi.org/10.1007/s10530-014-0694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0694-1

Keywords

Navigation