Biological Invasions

, Volume 16, Issue 11, pp 2351–2366 | Cite as

Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia

Original Paper

Abstract

Chromolaena odorata is a native of America while a weed in many parts of tropical and subtropical regions in the world. Research into the invasion mechanisms of C. odorata contributes to a broader understanding of factors that facilitate plant adaptation, and also helps developing effective management strategies. In this study, we used three DNA fragments and six microsatellite loci: (1) to compare genetic diversity of C. odorata in its native and invaded regions; (2) to elucidate the invasive routes and identify possible source locations of C. odorata from America to Asia, with attempt to evaluate the possible mechanisms facilitating the successful invasion of this species. Despite two recorded independent introductions, DNA sequence data revealed only one single haplotype of C. odorata present throughout tropical Asia. All six microsatellite loci consistently exhibited extremely low genetic diversity in Asian populations compared to those from native ranges. Our results implied that there was likely only a single introduction to Asia, and Trinidad, Tobago and adjacent areas in the West Indies were the most likely source location of that introduction. The successful invasion of C. odorata in Asia may have been facilitated by the genotype with strong competitive ability.

Keywords

Chromolaena odorata Genetic diversity Haplotype network Invasion genetics Phylogeography Source location 

Supplementary material

10530_2014_669_MOESM1_ESM.docx (25 kb)
Supplementary material 1 Details of ITS sequences of Chromolaena odorata downloaded from Genebank (DOCX 24 kb)
10530_2014_669_MOESM2_ESM.docx (36 kb)
Supplementary material 2 Genetic diversity estimates of six microsatellite loci for Chromolaena odorata populations (DOCX 35 kb)
10530_2014_669_MOESM3_ESM.pdf (247 kb)
Supplementary material 3 Optimal population clusters (K) estimated from the posterior probability follow the method of △K (Evanno et al., 2005) (PDF 246 kb)

References

  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17(1):24–30CrossRefGoogle Scholar
  2. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48PubMedCrossRefGoogle Scholar
  3. Bennette F, Rao V (1968) Distribution of an introduced weed Eupatorium odoratum Linn. (Compositae) in Asia and Africa and possibility of its biological control. Int J Pest Manag 14(3):277–281CrossRefGoogle Scholar
  4. Biswas K (1934) Some foreign weeds and their distribution in India and Burma. Indian For 60(12):862–865Google Scholar
  5. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144(1):1–11PubMedCrossRefGoogle Scholar
  6. Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39(4):245–250Google Scholar
  7. Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2(2):187–199CrossRefPubMedCentralGoogle Scholar
  8. Coleman JR (1989) Embryology and cytogenetics of apomictic hexaploid Eupatorium odoratum L. (Compositae). Rev Bras Genet 12:803–817Google Scholar
  9. Cruz Z, Muniappan R, Reddy GVP (2006) Establishment of Cecidochares connexa (Diptera: Tephritidae) in Guam and its effect on the growth of Chromolaena odorata (Asteraceae). Ann Entomol Soc Am 99(5):845–850CrossRefGoogle Scholar
  10. De Rouw A (1991) The invasion of Chromolaena odorata (L.) King & Robinson (ex Eupatorium odoratum), and competition with the native flora, in a rain forest zone, south-west Cote d’Ivoire. J Biogeogr 18(1):13–23CrossRefGoogle Scholar
  11. Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Evol 17(1):431–449Google Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15Google Scholar
  13. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14(4):135–139PubMedCrossRefGoogle Scholar
  14. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97(13):7043–7050PubMedCrossRefPubMedCentralGoogle Scholar
  15. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Evol 19(19):4113–4130Google Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Evol 14(8):2611–2620Google Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491PubMedPubMedCentralGoogle Scholar
  18. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  19. Frankham R, Ralls K (1998) Conservation biology-Inbreeding leads to extinction. Nature 392(6675):441–442CrossRefGoogle Scholar
  20. Fuentes-Contreras E, Figueroa C, Reyes M, Briones L, Niemeyer H (2004) Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bull Entomol Res 94(01):11–18PubMedCrossRefGoogle Scholar
  21. Garcia-Rossi D, Rank N, Strong DR (2003) Potential for self-defeating biological control? Variation in herbivore vulnerability among invasive Spartina genotypes. Evol Appl 13(6):1640–1649Google Scholar
  22. Gautier L (1992) Taxonomy and distribution of a tropical weed: Chromolaena odorata (L.) R. King and H. Robinson. Candollea 47(2):645–662Google Scholar
  23. Gautier L (1993) Reproduction of a pantropical weed: Chromolaena odorata (L.) R. King and H. Robinson. Candollea 48(1):179–193Google Scholar
  24. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Evol 14(14):4275–4285Google Scholar
  25. Ghazoul J (2004) Alien abduction: disruption of native plant-pollinator interactions by invasive species. Biotropica 36(2):156–164Google Scholar
  26. Goodall J, Erasmus D (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agric Ecosyst Environ 56(3):151–164CrossRefGoogle Scholar
  27. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). http://www.unil.ch/izea/softwares/fstat.html
  28. Hänfling B, Kollmann J (2002) An evolutionary perspective of biological invasions. Trends Ecol Evol 17(12):545–546CrossRefGoogle Scholar
  29. Harrison JS, Mondor EB (2011) Evidence for an invasive aphid “superclone”: extremely low genetic diversity in oleander aphid (Aphis nerii) populations in the southern United States. PLoS ONE 6(3):e17524PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Evol 15(1):263–275Google Scholar
  31. Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH (2013) The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Mol Evol 22(9):2496–2510Google Scholar
  32. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11(8):852–866PubMedCrossRefGoogle Scholar
  33. Kirk H, Paul J, Straka J, Freeland JR (2011) Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Am J Bot 98(7):1180–1190PubMedGoogle Scholar
  34. Kriticos D, Yonow T, McFadyen R (2005) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45(4):246–254CrossRefGoogle Scholar
  35. Lakshmi PV, Raju AJS, Ram DJ, Ramana KV (2011) Floral biology, psychophily, anemochory and zoochory in Chromolaena odorata (L.) King and HE Robins (Asteraceae). Pak J Sci Ind Res 54(1):1–8Google Scholar
  36. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104(10):3883–3888PubMedCrossRefPubMedCentralGoogle Scholar
  37. Le Roux JJ, Wieczorek AM, Wright MG, Tran CT (2007) Super-genotype: global monoclonality defies the odds of nature. PLoS ONE 2(7):e590PubMedCrossRefPubMedCentralGoogle Scholar
  38. Librado P, Rozas J (2009) DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452PubMedCrossRefGoogle Scholar
  39. Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8(7):1461–1470CrossRefGoogle Scholar
  40. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Hollands Printing Ltd, AucklandGoogle Scholar
  41. Marrs RA, Sforza R, Hufbauer RA (2008) Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol Evol 17(19):4197–4208Google Scholar
  42. McFadyen REC (1989) Siam weed: a new threat to Australia’s north. Plant Prot Q 4(1):3–7Google Scholar
  43. McFadyen REC (1993) National report from Australia and the Pacific. Proceedings of the third international workshop on biological control and management of Chromolaena odorata. Abidjan, Ivory Coast, pp 39–44Google Scholar
  44. McFadyen REC (2002) Chromolaena in Asia and the Pacific: spread continues but control prospects improve. Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata. Durban, South Africa, pp 13–18Google Scholar
  45. McFadyen RC, Skarratt B (1996) Potential distribution of Chromolaena odorata (siam weed) in Australia, Africa and Oceania. Agric Ecosyst Environ 59(1–2):89–96CrossRefGoogle Scholar
  46. McFadyen REC, Desmier de Chenon R, Sipayung A (2003) Biology and host specificity of the Chromolaena stem gall fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae). Aust J Entomol 42(3):294–297CrossRefGoogle Scholar
  47. Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19(8):417–422PubMedCrossRefGoogle Scholar
  48. Muniappan R, Bamba J (2000) Biological control of Chromolaena odorata: successes and failures. Proceedings of the tenth international symposium on biological control of weeds. Montana, USA, pp 81–85Google Scholar
  49. Muniappan R, Bamba J, Zachariades C, Strathie L (2002) Host-specificity testing of Cecidochares connexa, a biological control agent for Chromolaena odorata. Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata. Durban, South Africa, pp 134–136Google Scholar
  50. Muniappan R, Reddy GVP, Lai PY (2005) Distribution and biological control of Chromolaena odorata. In: Inderjit I (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 223–233Google Scholar
  51. Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: Influence of mating system and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer & Associates, Sunderland, pp 210–228Google Scholar
  52. Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart AL, Besnard G (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105(6):881–890PubMedCrossRefPubMedCentralGoogle Scholar
  53. Paterson ID, Zachariades C (2013) ISSRs indicate that Chromolaena odorata invading southern Africa originates in Jamaica or Cuba. Biol Control 66(2):132–139CrossRefGoogle Scholar
  54. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  55. Perdereau E, Bagnères AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo E, Dedeine F (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes in France. Mol Evol 22(4):1105–1119Google Scholar
  56. Pérez JE, Nirchio M, Alfonsi C, Muñoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invasions 8(5):1115–1121CrossRefGoogle Scholar
  57. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144(3):1237–1245PubMedPubMedCentralGoogle Scholar
  58. Poulin J, Weller SG, Sakai AK (2005) Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona California and Hawaii. Divers Distrib 11(3):241–247CrossRefGoogle Scholar
  59. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13(6):288–294PubMedCrossRefGoogle Scholar
  60. Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. Ann Bot 106(6):1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  62. Qin RM, Zheng YL, Valiente-Banuet A, Callaway RM, Barclay GF, Pereyra CS, Feng YL (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol 197(3):979–988PubMedCrossRefGoogle Scholar
  63. Raimundo RLG, Fonseca RL, Schachetti-Pereira R, Townsend Peterson A, Lewinsohn TM (2007) Native and exotic distributions of siamweed (Chromolaena odorata) modeled using the genetic algorithm for rule-set production. Weed Sci 55(1):41–48CrossRefGoogle Scholar
  64. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249Google Scholar
  65. Ren M, Zhang Q, Zhang D (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45(3):236–244CrossRefGoogle Scholar
  66. Roman J, Darling J (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22(9):454–464PubMedCrossRefGoogle Scholar
  67. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  68. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92(15):6813–6817PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84(8):1120PubMedCrossRefGoogle Scholar
  70. Schmidt GJ, Schilling EE (2000) Phylogeny and biogeography of Eupatorium (Asteraceae: Eupatorieae) based on nuclear ITS sequence data. Am J Bot 87(5):716–726PubMedCrossRefGoogle Scholar
  71. Scott LJ, Lange CL, Graham GC, Yeates DK (1998) Genetic diversity and origin of siam weed (Chromolaena odorata) in Australia. Weed Technol 12(1):27–31Google Scholar
  72. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99(24):15497–15500PubMedCrossRefPubMedCentralGoogle Scholar
  73. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169PubMedCrossRefPubMedCentralGoogle Scholar
  74. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989PubMedCrossRefPubMedCentralGoogle Scholar
  75. Tate JA (2002) Systematics and evolution of Tarasa (Malvaceae): an enigmatic Andean polyploid genus. Dissertation, The University of TexasGoogle Scholar
  76. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tsutsui ND (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97(11):5948–5953PubMedCrossRefPubMedCentralGoogle Scholar
  78. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538CrossRefGoogle Scholar
  79. Wang XY, Shen DW, Jiao J, Xu NN, Yu S, Zhou XF, Shi MM, Chen XY (2012) Genotypic diversity enhances invasive ability of Spartina alterniflora. Mol Evol 21:2542–2551Google Scholar
  80. Ward SM, Jasieniuk M (2009) Sampling weedy and invasive plant populations for genetic diversity analysis. Weed Sci 57(6):593–602CrossRefGoogle Scholar
  81. Waterhouse BM (1994) Discovery of Chromolaena odorata in northern Queensland, Australia. Chromolaena odorata Newsl 9:1–3Google Scholar
  82. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  83. White TH, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and amplifications. Academic, San Diego, pp 315–322CrossRefGoogle Scholar
  84. Wright S (1949) The genetical structure of populations. Ann Eugen 15(1):323–354CrossRefGoogle Scholar
  85. Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Res 44(2):129–135CrossRefGoogle Scholar
  86. Yu XQ, Li QM (2011) Isolation and characterization of microsatellite markers for a worldwide invasive weed, Chromolaena odorata (Asteraceae). Am J Bot 98(9):e259–e261PubMedCrossRefGoogle Scholar
  87. Zachariades C, Day M, Muniappan R, Reddy GVP (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 130–162CrossRefGoogle Scholar
  88. Zalucki M, Day M, Playford J (2007) Will biological control of Lantana camara ever succeed? Patterns, processes and prospects. Biol Control 42(3):251–261CrossRefGoogle Scholar
  89. Zepeda-Paulo F, Simon JC, Ramírez C, Fuentes-Contreras E, Margaritopoulos J, Wilson A, Sorenson C, Briones L, Azevedo R, Ohashi D (2010) The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Evol 19(21):4738–4752Google Scholar
  90. Zhang YY, Zhang DY, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Evol 19(9):1774–1786Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xiangqin Yu
    • 1
    • 2
  • Tianhua He
    • 3
  • Jianli Zhao
    • 4
  • Qiaoming Li
    • 1
  1. 1.Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Environment and AgricultureCurtin UniversityPerthAustralia
  4. 4.The Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunPeople’s Republic of China

Personalised recommendations