Skip to main content

Advertisement

Log in

Removal of livestock alters native plant and invasive mammal communities in a dry grassland–shrubland ecosystem

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allcock KG, Hik DS (2004) Survival, growth, and escape from herbivory are determined by habitat and herbivore species for three Australian woodland plants. Oecologia 138:231–241. doi:10.1007/s00442-003-1420-3

    Article  PubMed  Google Scholar 

  • Amiaud B, Touzard B, Bonis A et al (2008) After grazing exclusion, is there any modification of strategy for two guerrilla species: Elymus repens (L.) Gould and Agrostis stolonifera (L.)? Plant Ecol 197:107–117. doi:10.1007/s11258-007-9364-z

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1046/j.1442-9993.2001.01070.x

    Google Scholar 

  • Angel A, Wanless RM, Cooper J (2008) Review of impacts of the introduced house mouse on islands in the Southern Ocean: are mice equivalent to rats? Biol Invasions 11:1743–1754. doi:10.1007/s10530-008-9401-4

    Article  Google Scholar 

  • Arthur A, Pech R, Dickman C (2004) Habitat structure mediates the non lethal effects of predation on enclosed populations of house mice. J Anim Ecol 73:867–877. doi:10.1111/j.0021-8790.2004.00864.x

    Article  Google Scholar 

  • Bakker ES, Ritchie ME, Olff H et al (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. doi:10.1111/j.1461-0248.2006.00925.x

    Article  PubMed  Google Scholar 

  • Bellingham PJ (1998) Shrub succession and invasibility in a New Zealand montane grassland. Aust J Ecol 23:562–573. doi:10.1111/j.1442-9993.1998.tb00766.x

    Article  Google Scholar 

  • Cingolani A, Noy-Meir I, Diaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15:757–773. doi:10.1890/03-5272

    Article  Google Scholar 

  • Coomes DA, Allen RB, Scott NA et al (2002) Designing systems to monitor carbon stocks in forests and shrublands. For Ecol Manage 164:89–108. doi:10.1016/S0378-1127(01)00592-8

    Article  Google Scholar 

  • Courchamp F, Caut S (2006) Use of biological invasions and their control to study the dynamics of interacting populations. In: Cadotte M, McMahon S, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Invasion ecology 1. Springer, Berlin, pp 243–269

    Chapter  Google Scholar 

  • Cowan PE (2005) Brushtail possum. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 56–80

    Google Scholar 

  • Day NJ, Buckley HL (2013) Twenty-five years of plant community dynamics and invasion in New Zealand tussock grasslands. Austral Ecol. doi:10.1111/aec.12016

  • Denyer JL, Hartley SE, John EA (2010) Both bottom-up and top-down processes contribute to plant diversity maintenance in an edaphically heterogeneous ecosystem. J Ecol 98:498–508. doi:10.1111/j.1365-2745.2009.01633.x

    Article  Google Scholar 

  • Diaz S, Lavorel S, McIntyre S et al (2007) Plant trait responses to grazing—a global synthesis. Glob Chang Biol 13:313–341. doi:10.1111/j.1365-2486.2006.01288.x

    Article  Google Scholar 

  • Diez JM, Buckley HL, Case BS et al (2009) Interacting effects of management and environmental variability at multiple scales on invasive species distributions. J Appl Ecol 46:1210–1218. doi:10.1111/j.1365-2664.2009.01725.x

    Google Scholar 

  • Dodd M, Barker G, Burns B et al (2011) Resilience of New Zealand indigenous forest fragments to impacts of livestock and pest mammals. N Z J Ecol 35:83–95

    Google Scholar 

  • Dungan RJ, O’Cain MJ, Lopez ML et al (2002) Contribution by possums to seed rain and subsequent seed germination in successional vegetation, Canterbury, New Zealand. N Z J Ecol 26:121–128

    Google Scholar 

  • Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10:197–206. doi:10.1111/j.1461-0248.2006.01010.x

    Article  PubMed  Google Scholar 

  • Fabian Y, Sandau N, Bruggisser OT et al (2012) Diversity protects plant communities against generalist molluscan herbivores. Ecol Evol 2:2460–2473. doi:10.1002/ece3.359

    Article  PubMed Central  PubMed  Google Scholar 

  • Fensham R, Silcock J, Dwyer J (2011) Plant species richness responses to grazing protection and degradation history in a low productivity landscape. J Veg Sci 22:997–1008. doi:10.1111/j.1654-1103.2011.01305.x

    Article  Google Scholar 

  • Firn J, House APN, Buckley YM (2010) Alternative states models provide an effective framework for invasive species control and restoration of native communities. J Appl Ecol 47:96–105. doi:10.1111/j.1365-2664.2009.01741.x

    Article  Google Scholar 

  • Forsyth DM, Wilmshurst JM, Allen RB et al (2010) Impacts of introduced deer and extinct moa on New Zealand ecosystems. N Z J Ecol 34:48–65

    Google Scholar 

  • Grosholz E (2010) Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecol Lett 13:145–153. doi:10.1111/j.1461-0248.2009.01409.x

    Article  PubMed  CAS  Google Scholar 

  • Grove PB, Mark AF, Dickinson KJM (2002) Vegetation monitoring of recently protected tussock grasslands in the southern South Island, New Zealand. J R Soc N Z 32:379–414. doi:10.1080/03014223.2002.9517700

    Article  Google Scholar 

  • Haarmeyer DH, Schmiedel U, Dengler J et al (2010) How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management. Biol Conserv 143:588–596. doi:10.1016/j.biocon.2009.11.008

    Article  Google Scholar 

  • Harris W, Fan J (1996) The role of fertiliser in the invasion of South Island high country by hawkweeds. Proc N Z Grassl Assoc 58:205–210

    Google Scholar 

  • Hurst JM, Allen RB (2007) The Recce method for describing New Zealand vegetation-field protocols. Manaaki Whenua—Landcare Research, Lincoln, New Zealand

  • Innes J, Hay R, Flux I et al (1999) Successful recovery of North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. Biol Conserv 87:201–214. doi:10.1016/S0006-3207(98)00053-6

    Article  Google Scholar 

  • Jones C, Sanders MD (2005) European hedgehog. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 81–94

    Google Scholar 

  • Kenkel NC, Orloci L (1986) Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928. doi:10.2307/1939814

    Article  Google Scholar 

  • Kimball S, Schiffman PM (2003) Differing effects of cattle grazing on native and alien plants. Conserv Biol 17:1681–1693. doi:10.1111/j.1523-1739.2003.00205.x

    Article  Google Scholar 

  • King CM, Edgar RL (1977) Techniques for trapping and tracking stoats (Mustela erminea): a review, and a new system. N Z J Zool 4:193–212. doi:10.1080/03014223.1977.9517953

    Article  Google Scholar 

  • Kutt AS, Gordon IJ (2012) Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas. Anim Conserv 15:416–425. doi:10.1111/j.1469-1795.2012.00530.x

    Article  Google Scholar 

  • Lee W, Wood J, Rogers G (2010) Legacy of avian-dominated plant-herbivore systems in New Zealand. N Z J Ecol 34:28–47

    Google Scholar 

  • Legge S, Kennedy MS, Lloyd R et al (2011) Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral Ecol 36:791–799. doi:10.1111/j.1442-9993.2010.02218.x

    Article  Google Scholar 

  • Lunt I, Eldridge D, Morgan J et al (2007) A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust J Bot 55:401–415. doi:10.1071/BT06178

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010%5B0689:BICEGC%5D2.0.CO%3B2

    Article  Google Scholar 

  • MacKay AD, Lambert MG (2011) Long-term changes in soil fertility and pasture production under no, low and high phosphorous fertiliser inputs. Proc N Z Grassl Assoc 73:37–42

    Google Scholar 

  • Mark AF (1969) Ecology of snow tussocks in the mountain grasslands of New Zealand. Vegetatio 18:289–306. doi:10.1007/BF00332843

    Article  Google Scholar 

  • Mark AF, Dickinson KJM (2003) Temporal responses over 30 years to removal of grazing from a mid-altitude snow tussock grassland reserve, Lammerlaw Ecological Region, New Zealand. N Z J Bot 41:655–667. doi:10.1080/0028825X.2003.9512876

    Article  Google Scholar 

  • May F, Grimm V, Jeltsch F (2009) Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry. Oikos 118:1830–1843. doi:10.1111/j.1600-0706.2009.17724.x

    Article  Google Scholar 

  • McGlone MS, Wilmshurst JM (1999) Dating initial Maori environmental impact in New Zealand. Quat Int 59:5–16. doi:10.1016/S1040-6182(98)00067-6

    Article  Google Scholar 

  • Meffin R, Miller AL, Hulme PE et al (2010) Experimental introduction of the alien plant Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815. doi:10.1111/j.1472-4642.2010.00684.x

    Article  Google Scholar 

  • Meurk CD, Walker S, Gibson RS et al (2002) Changes in vegetation states in grazed and ungrazed Mackenzie Basin grasslands, New Zealand, 1990–2000. N Z J Ecol 26:95–106

    Google Scholar 

  • Norbury G, Flux JEC (2005) Brown hare. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 151–158

    Google Scholar 

  • Norbury G, Reddiex B (2005) European rabbit. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 131–151

    Google Scholar 

  • Norbury GL, Byrom AE, Pech RP et al (2013) Invasive mammals and habitat modification interact to generate unforeseen outcomes for indigenous fauna. Ecol Appl. 23:1707–1721. doi:10.1890/12-1958.1

    Google Scholar 

  • Norton DA, Espie PR, Murray W et al (2006) Influence of pastoral management on plant biodiversity in a depleted short tussock grassland, Mackenzie Basin. N Z J Ecol 30:335–344

    Google Scholar 

  • O’Hara R, Kotze J (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2010) Vegan: community ecology package. R package version 1.17-1

  • Partridge T, Allen R, Johnson P et al (1991) Vegetation/environment relationships in lowland and montane vegetation of the Kawarau Gorge, Central Otago, New Zealand. N Z J Bot 29:295–310. doi:10.1080/0028825X.1991.10416608

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. Version 2.10.1. R Foundation for Statistical Computing, Vienna, Austria

  • Rogers G, Walker S, Lee B (2005) The role of disturbance in dryland New Zealand: past and present. Science for Conservation 258, Department of Conservation, Wellington, New Zea, pp 1–122

  • Rose AB, Frampton CM (2007) Rapid short-tussock grassland decline with and without grazing, Marlborough, New Zealand. N Z J Ecol 31:232–244

    Google Scholar 

  • Rose AB, Platt KH (1992) Snow tussock (Chionochloa) population responses to removal of sheep and European hares, Canterbury, New Zealand. N Z J Bot 30:373–382. doi:10.1080/0028825X.1992.10412917

    Article  Google Scholar 

  • Rose AB, Platt KH, Frampton CM (1995) Vegetation change over 25 years in a New Zealand short-tussock grassland: effects of sheep grazing and exotic invasions. N Z J Ecol 19:163–174

    Google Scholar 

  • Rose AB, Suisted PA, Frampton CM (2004) Recovery, invasion, and decline over 37 years in a Marlborough short-tussock grassland, New Zealand. N Z J Bot 42:77–87. doi:10.1080/0028825X.2004.9512891

    Article  Google Scholar 

  • Sage DJM, Norton DA, Espie PR (2009) Effect of grazing exclusion on the woody weed Rosa rubiginosa in high country short tussock grasslands. N Z J Agric Res 52:123–128. doi:10.1080/00288230909510496

    Article  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW et al (2010a) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. doi:10.1038/nature09492

    Article  PubMed  CAS  Google Scholar 

  • Scherber C, Heimann J, Kohler G et al (2010b) Functional identity versus species richness: herbivory resistance in plant communities. Oecologia 163:707–717. doi:10.1007/s00442-010-1625-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi:10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  • Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Hieracium invasion in New Zealand’s grazed tussock grasslands: Sustainability implications. Ecol Appl 11:1311–1322. doi:10.1890/1051-0761%282001%29011%5B1311%3ABIOHII%5D2.0.CO%3B2

    Google Scholar 

  • Skaer MJ, Graydon DJ, Cushman JH (2013) Community-level consequences of cattle grazing for an invaded grassland: variable responses of native and exotic vegetation. J Veg Sci 24:332–343. doi:10.1111/j.1654-1103.2012.01460.x

    Article  Google Scholar 

  • Smit R, Bokdam J, den Ouden J et al (2001) Effects of introduction and exclusion of large herbivores on small rodent communities. Plant Ecol 155:119–127

    Article  Google Scholar 

  • Souter NJ, Milne T (2009) Grazing exclusion as a conservation measure in a South Australian temperate native grassland. Grassl Sci 55:79–88

    Article  Google Scholar 

  • Sweetapple P, Nugent G (2011) Chew-track-cards: a multiple-species small mammal detection device. N Z J Ecol 35:153–162

    Google Scholar 

  • Tate KR, Scott NA, Saggar S et al (2003) Land-use change alters New Zealand’s terrestrial carbon budget: uncertainties associated with estimates of soil carbon change between 1990–2000. Tellus B 55:364–377. doi:10.1034/j.1600-0889.2003.01444.x

    Article  Google Scholar 

  • Thorsen MJ, Dickinson KJM, Seddon PJ (2009) Seed dispersal systems in the New Zealand flora. Perspect Plant Ecol Evol Syst 11:285–309. doi:10.1016/j.ppees.2009.06.001

    Article  Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647. doi:10.1111/j.0030-1299.2005.13727.x

    Article  Google Scholar 

  • Verrier FJ, Kirkpatrick JB (2005) Frequent mowing is better than grazing for the conservation value of lowland tussock grasssland at Pontville, Tasmania. Austral Ecol 30:74–78. doi:10.1111/j.1442-9993.2004.01425.x

    Article  Google Scholar 

  • Virgós E, Cabezas-Díaz S, Malo A et al (2003) Factors shaping European rabbit abundance. Acta Theriol 48:113–122. doi:10.1007/BF03194271

    Article  Google Scholar 

  • Walker S (2000) Post-pastoral changes in composition and guilds in a semi-arid conservation area, Central Otago, New Zealand. N Z J Ecol 24:123–137

    Google Scholar 

  • Walker S, Lee WG (2002) Alluvial grasslands of Canterbury and Marlborough, eastern South Island, New Zealand: vegetation patterns and long-term change. J R Soc N Z 32:113–147. doi:10.1080/03014223.2002.9517686

    Article  Google Scholar 

  • Walker S, Wilson JB, Lee WG (2003) Recovery of short tussock and woody species guilds in ungrazed Festuca novae-zelandiae short tussock grassland with fertiliser or irrigation. N Z J Ecol 27:179–189

    Google Scholar 

  • Walker S, Wilson JB, Lee WG (2005) Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biol Invasions 7:195–211. doi:10.1007/s10530-004-8976-7

    Article  Google Scholar 

  • Walker S, Price R, Stephens RT (2008) An index of risk as a measure of biodiversity conservation achieved through land reform. Conserv Biol 22:48–59. doi:10.1111/j.1523-1739.2007.00844.x

    Article  PubMed  Google Scholar 

  • Walker S, Cieraad E, Monks A et al (2009) Long-term dynamics and rehabilitation of woody ecosystems in dryland South Island, New Zealand. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, DC, pp 99–111

    Google Scholar 

  • Warburton B (2005) Bennett’s wallaby. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 39–45

    Google Scholar 

  • Weigelt A, Schumacher J, Walther T et al (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95:53–64. doi:10.1111/j.1365-2745.2006.01198.x

    Article  Google Scholar 

  • Williams PA, Karl BJ, Bannister P et al (2000) Small mammals as potential seed dispersers in New Zealand. Austral Ecol 25:523–532. doi:10.1046/j.1442-9993.2000.01078.x

    Article  Google Scholar 

  • Wilson DJ, Lee WG (2010) Primary and secondary resource pulses in an alpine ecosystem: snow tussock grass (Chionochloa spp.) flowering and house mouse (Mus musculus) populations in New Zealand. Wildl Res 37:89–103. doi:10.1071/WR09118

    Article  Google Scholar 

  • Yeaton RI, Flores JLF (2009) Community structure of a southern Chihuahuan Desert grassland under different grazing pressures. S Afr J Bot 75:510–517. doi:10.1016/j.sajb.2009.04.004

    Article  Google Scholar 

  • Young LM (2012) Seed dispersal mutualisms and plant regeneration in New Zealand alpine ecosystems. PhD thesis, School of Biological Sciences, University of Canterbury, New Zealand, 182 p

Download references

Acknowledgments

C Jensen, R Carran, E Hayman, V Harrison and G Pech assisted with collection of field data. N Thornley from the New Zealand Department of Conservation (DOC) provided maps showing boundaries of properties transferred to the conservation estate. C Thomson and J Whitford helped with site selection. R Duncan helped with data analysis and interpretation. Access to sites was provided by H Inch, B and J Kirk, G Burrows and DOC. This work was greatly improved by discussions with S Walker, S Timmins, C Krebs, ARE Sinclair, A Kenney, and J Reardon. A Mark provided insightful comments on an earlier draft of the manuscript. This work was funded by the New Zealand Ministry of Building, Innovation and Employment’s Science and Innovation Group, through core funding to Crown Research Institutes and funding for contracted projects C09X0505 and C09X0909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea E. Byrom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, A.L., Byrom, A.E., Clayton, R.I. et al. Removal of livestock alters native plant and invasive mammal communities in a dry grassland–shrubland ecosystem. Biol Invasions 16, 1105–1118 (2014). https://doi.org/10.1007/s10530-013-0565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0565-1

Keywords

Navigation