Skip to main content

Modeling the secondary spread of viral hemorrhagic septicemia virus (VHSV) by commercial shipping in the Laurentian Great Lakes

Abstract

Researchers have only begun to study the role of shipping in the spread of invasive species in the Laurentian Great Lakes despite a well-documented history of introductions in these lakes due to ballast water release. Here, we determine whether ballast water discharge was a likely vector of spread of the fish disease, viral hemorrhagic septicemia virus genotype IVb (VHSV-IVb), throughout the Great Lakes and St. Lawrence Seaway. Three models were developed to assess whether the spread of VHSV was due to (1) chance (random model), or (2) ballast water discharge (location model), and whether (3) increased propagule pressure, as measured by the number of visitations by ships carrying ballast water from VHSV infected areas, increased the likelihood of a discharge location becoming infected with VHSV (propagule pressure model). The third model was also used to assess the probable point of initial introduction of VHSV. Presence and absence accuracies and weighted Cohen’s kappa were calculated to determine which models best predicted observed presences and absences of VHSV. Location models explain the patterns of VHSV detections better than random models, and inclusion of “propagule pressure” often improved model fit; however, the relationship is weak likely because of a long lag time between introduction and detection, a high rate of false negatives in reporting, and the possible contribution of other vectors of spread. Montreal was also identified as the more likely introduction site of VHSV, rather than Lake St. Clair, the site where the virus was first detected.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • APHIS (2008) Amended federal order: viral hemorrhagic septicemia (VHS). Animal and Plant Health Inspection Service (APHIS), Washington, DC

  • Bain MB, Cornwell ER, Hope KM, Eckerlin GE, Casey RN, Groocock GH, Getchell RG, Bowser PR, Winton JR, Batts WN, Cangelosi A, Casey JW (2010) Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping. PLoS ONE 5:e10156

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  • Beletsky D, Schwab D (2008) Climatological circulation in Lake Michigan. Geophys Res Lett 35:L21604. doi:10.1029/2008GL035773

  • Cangelosi A, Mays N (2006) Great ships for Great Lakes? Commercial vessels free of invasive species in the Great Lakes-St. Lawrence Seaway System. Northeast Midwest Institute, Washington, DC

    Google Scholar 

  • Chico V, Gomez N, Estepa A, Perez L (2006) Rapid detection and quantitation of viral hemorrhagic septicemia virus in experimentally challenged rainbow trout by real-time RT-PCR. J Virol Methods 132:154–159. doi:10.1016/j.jviromet.2005.10.005

    PubMed  Article  CAS  Google Scholar 

  • Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220. doi:10.1037/h0026256

    PubMed  Article  CAS  Google Scholar 

  • Covalciuc KA, Webb KH, Carlson CA (1999) Comparison of four clinical specimen types for detection of influenza A and B viruses by optical immunoassay (FLU OIA test) and cell culture methods. J Clin Microbiol 37:3971–3974

    PubMed Central  PubMed  CAS  Google Scholar 

  • Drake LA, Doblin MA, Dobbs FC (2007) Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar Pollut Bull 55:333–341. doi:10.1016/j.marpolbul.2006.11.007

    PubMed  Article  CAS  Google Scholar 

  • Eames I, Landeryou M, Greig A, Snellings J (2008) Continuous flushing of contaminants from ballast water tanks. Mar Pollut Bull 56:250–260. doi:10.1016/j.marpolbul.2007.10.032

    PubMed  Article  CAS  Google Scholar 

  • Eckerlin GE, Farrell JM, Casey RN, Hope KM, Groocock GH, Bowser PR, Casey J (2011) Temporal variation in prevalence of viral hemorrhagic septicemia virus type IVb among Upper St. Lawrence River smallmouth bass. Trans Am Fish Soc 140:529–536. doi:10.108/00028487.2011.581975

    Article  Google Scholar 

  • Elsayed E, Faisal M, Thomas M, Whelan G, Batts W, Winton J (2006) Isolation of viral haemorrhagic septicaemia virus from muskelluge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the North American genotype. J Fish Dis 29:611–619. doi:10.1111/j.1365-2761.2006.00755.x

    PubMed  Article  CAS  Google Scholar 

  • Faisal M, Winters AD (2011) Detection of viral hemorrhagic septicemia virus (VHSV) from Diporeia spp. (Pontoporeiidae, Amphipoda) in the Laurentian Great Lakes, USA. Parasit Vectors 4:1–4. doi:10.1186/1756-3305-4-2

    Article  Google Scholar 

  • Faisal M, Shavalier M, Kim RK, Millard EV, Gunn MR, Winters AD, Schulz CA, Eissa A, Thomas MV, Wolgamood M, Whelan GE, Winton J (2012) Spread of the emerging viral hemorrhagic septicemia virus strain, Gentoype IVb, in Michigan, USA. Viruses 4:734–760. doi:10.3390/v4050734

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  • Gilchrist JM (2009) Weighted 2 X 2 kappa coefficients: recommended indices of diagnostic accuracy for evidence-based practice. J Clin Epidemiol 62:1045–1053. doi:10.1016/j.jclinepi.2008.11.012

    PubMed  Article  Google Scholar 

  • GLANSIS: Great Lakes aquatic nonindigenous species information system (Undated) NOAA. http://www.glerl.noaa.gov/res/Programs/glansis/glansis.html. Accessed 11 Sept 2012

  • Griffiths RW, Schloesser DW, Leach JH, Kovalak WP (1991) Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Can J Fish Aquat Sci 48:1381–1388. doi:10.1139/f91-165

    Article  Google Scholar 

  • Grigorovich IA, Colautti RI, Mills EL, Holeck K, Ballert AG, MacIsaac HJ (2003) Ballast-mediated animal introductions in the Laurentian Great Lakes: retrospective and prospective analyses. Can J Fish Aquat Sci 60:740–756. doi:10.1139/F03-053

    Article  Google Scholar 

  • Hawley LM, Garver KA (2008) Stability of viral hemorrhagic septicemia virus (VHSV) in freshwater and seawater at various temperatures. Dis Aquat Org 82:171–178. doi:10.3354/dao01998

    PubMed  Article  Google Scholar 

  • Hebert PDN, Muncaster BW, Mackie GL (1989) Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Can J Fish Aquat Sci 46:1587–1591. doi:10.1139/f89-202

    Article  Google Scholar 

  • Hope KM, Casey RN, Groocock GH, Getchell RG, Bowser PR, Casey JW (2010) Comparison of quantitative RT-PCR with cell culture to detect viral hemorrhagic septicemia virus (VHSV) IVb infections in the Great Lakes. J Aquat Anim Health 22:50–61. doi:10.1577/H09-028.1

    PubMed  Article  Google Scholar 

  • Kane-Sutton M, Kinter B, Dennis PM, Koonce JF (2010) Viral hemorrhagic septicemia virus infection in Yellow Perch, Perca flavescens, in Lake Erie. J Great Lakes Res 36:37–43. doi:10.1016/j.jglr.2009.11.004

    Article  Google Scholar 

  • Kim R, Faisal M (2011) Emergence and resurgence of the viral hemorrhagic septicemia virus (Novirhabdovirus, Rhabdoviridae, Mononegavirales). J Adv Res 2(1):9–23. doi:10.1016/j.jare.2010.05.007

    Article  CAS  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    PubMed  Article  CAS  Google Scholar 

  • Leichsenring J, Lawrence J (2011) Effect of mid-oceanic ballast water exchange on virus-like particle abundance during two trans-Pacific voyages. Mar Pollut Bull 62:1103–1108. doi:10.1016/j.marpolbul.2011.01.034

    PubMed  Article  CAS  Google Scholar 

  • Lovell SJ, Drake LA (2009) Tiny stowaways: analyzing the economic benefits of a US Environmental Protection Agency permit regulating ballast water discharges. Environ Manag 43(3):546–555. doi:10.1007/s00267-008-9215-2

    Article  Google Scholar 

  • Lumsden JS, Morrison B, Yason C, Russell S, Young K, Yazdanpanah A, Huber P, Al-Hussinee L, Stone D, Way K (2007) Mortality event in freshwater drum Aplodinotus grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicemia virus, Type IV. Dis Aquat Organ 76:99–111. doi:10.3354/dao076099

    PubMed  Article  CAS  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. doi:10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  • Meyers TR, Winton JR (1995) Viral hemorrhagic septicemia virus in North America. Annu Rev Fish Dis 5:3–24. doi:0959-8030/95

    Article  Google Scholar 

  • Miller TA, Rapp J, Wastlhuber U, Hoffmann RW, Enzmann PJ (1998) Rapid and sensitive reverse transcriptase-polymerase chain reaction based detection and differential diagnosis of fish pathogenic rhabdoviruses in organ samples and cultured cells. Dis Aquat Organ 34:13–20. doi:10.3354/dao034013

    PubMed  Article  CAS  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492. doi:10.1890/070064

    Article  Google Scholar 

  • NAS-Nonindigenous aquatic species database (2009) USGS. http://nas.er.usgs.gov. Accessed 30 July 2011

  • National Ballast Information Clearinghouse (2009) Smithsonian Environmental Research Center (SERC) and USCG. http://invasions.si.edu/nbic/search.html. Accessed Aug 2012

  • National Research Council (2008) Great Lakes shipping, trade, and aquatic invasive species. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Pierce LR, Stepien CA (2012) Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish viral hemorrhagic septicemia virus (VHSV). Mol Phylogenet Evol 63:327–341. doi:10.1016/j.ympev.2011.12.024

    PubMed  Article  Google Scholar 

  • Ruiz GM, Rawlings TK, Dobbs FC, Drake LA, Mullady T, Huq A, Colwell RR (2000) Global spread of microorganisms by ships. Nature 408:49–50. doi:10.1038/35040695

    PubMed  Article  CAS  Google Scholar 

  • Rup MP, Bailey SA, Wiley CJ, Minton MS, Miller AW, Ruiz GM, MacIsaac HJ (2010) Domestic ballast operations on the Great Lakes: potential importance of lakers as a vector for introduction and spread of nonindigenous species. Can J Fish Aquat Sci 67:256–268. doi:10.1139/F09-180

    Article  Google Scholar 

  • Shipping Federation of Canada (2000) Code of best practices for ballast water management. Shipping Federation of Canada, Montreal

  • Simon TP, Vondruska JT (1991) Larval identification of the ruffe, Gymnocephalus cernuus (Linnaeus) (Percidae: Percini), in the St. Louis River Estuary, Lake Superior drainage basin, Minnesota. Can J Zool 69:436–442. doi:10.1139/z91-068

    Article  Google Scholar 

  • Stepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis. Risk Anal 25(4):1043–1060. doi:10.1111/j.1539-6924.2005.00655.x

    PubMed  Article  Google Scholar 

  • Thompson TM, Batts WN, Faisal M, Bowser P, Casey JW, Phillips K, Garver KA, Winton J, Kurath G (2011) Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity. Dis Aquat Organ 96:29–43. doi:10.3354/dao02362

    PubMed  Article  CAS  Google Scholar 

  • USEPA Science Advisory Board (2011) Efficacy of ballast water treatment systems: a report by the EPA Science Advisory Board. USEPA, Washington, DC

    Google Scholar 

  • Wald A, Huang M-L, Carrell D, Selke S, Corey L (2003) Polymerase chain reaction for detection of herpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSV isolation in cell culture. J Infect Dis 188(9):1345–1351. doi:10.1086/379043

    PubMed  Article  CAS  Google Scholar 

  • Warrens MJ (2011) Cohen’s linearly weighted kappa is a weighted average of 2 × 2 kappas. Psychometrika 76(3):471–486. doi:10.1007/s11336-011-9210-z

    Article  Google Scholar 

  • World Organisation for Animal Health (2011) Chapter 2.3.9: viral haemorrhagic septicaemia. Manual of diagnostic tests for aquatic animals 2011: summary. World Organisation for Animal Health, Paris

Download references

Acknowledgments

We would like to thank Ling Shen of the Minnesota Department of Natural Resources and Drs. Mark Bain and Paul Bowser from Cornell University for providing VHSV occurrence information. We would also like to thank Dr. David Reid for providing technical knowledge on ballast water management. This project was funded by grants from United States Department of Agriculture, National Institute of Food and Agriculture, Cooperative State Research, Education, and Extension Service, USDA-NIFA (CSREES) #2010-38927-21048 and National Oceanic and Atmospheric Agency, Center for Sponsored Coastal Ocean Research, NOAA-CSCOR #NA10NOS4780218. This is publication #2013-21 from the Lake Erie Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Sieracki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 266 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sieracki, J.L., Bossenbroek, J.M. & Faisal, M. Modeling the secondary spread of viral hemorrhagic septicemia virus (VHSV) by commercial shipping in the Laurentian Great Lakes. Biol Invasions 16, 1043–1053 (2014). https://doi.org/10.1007/s10530-013-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0556-2

Keywords

  • Ballast water management
  • Invasive species
  • Model uncertainty
  • Organism detection
  • Spatial modeling
  • Viral hemorrhagic septicemia virus (VHSV)