Skip to main content
Log in

Inferring the complex origins of horticultural invasives: French broom in California

  • Original Article
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Investigating the origins of invasive populations provides insight into the evolutionary and anthropogenic factors underlying invasions, and can inform management decisions. Invasive species introduced for horticultural purposes often have complex origins typified by multiple introductions of species, cultivars, and genotypes, and interspecific and intraspecific hybridizations in introduced ranges. Such complex introduction histories may result in complex genetic signatures in the invaded range, making inferences about origins difficult, particularly when all putative sources cannot be sampled. In this study, we inferred the origins of the invasive French broom complex in California using 12 nuclear microsatellite markers. We characterized the genetic diversity and population structure of invasive and horticultural brooms in their invaded range in California and of Genista monspessulana in its native Mediterranean range. Overall, no significant differences in allelic richness, observed heterozygosity, inbreeding, or genetic structure were observed between the invaded and native ranges, but differences existed among populations within ranges. Bayesian STRUCTURE analysis revealed three genetic clusters in the French broom complex. Nearly all native G. monspessulana assigned highly to a single cluster. Many invasives assigned to a second cluster that contained Genista canariensis, Genista stenopetala, and ornamental sweet broom, and the remaining invasives assigned to a third cluster that also contained some G. monspessulana individuals from Sardinia and Corsica. Admixture between the second and third clusters was detected. Approximate Bayesian Computation analysis of six alternative scenarios supported the hypothesis that some invasive French broom is derived from an unsampled population branching from ornamental sweet broom. A combination of factors, including multiple introductions, escapes from cultivation, and inter-taxon hybridization, likely contribute to the invasive success of French broom in California and may have important implications for management, in particular biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander JM, Poll M, Dietz H, Edwards PJ (2009) Contrasting patterns of genetic variation and structure in plant invasions of mountains. Divers Distrib 15:502–512

    Article  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed Central  PubMed  Google Scholar 

  • Blum MJ, Walters DM, Burkhead NM, Freeman BJ, Porter BA (2010) Reproductive isolation and the expansion of an invasive hybrid swarm. Biol Invasions 12:2825–2836

    Article  Google Scholar 

  • Boratyński A, Lewandowski A, Boratyńska K, Montserrat JM, Romo A (2009) High level of genetic differentiation of Juniperus phoenicea (Cupressaceae) in the Mediterranean region: geographic implications. Plant Syst Evol 277:163–172

    Article  Google Scholar 

  • Bossard CC (2000) Genista monspessulana (L.) L. Johnson. In: Bossard CC, Randall JM, Hoshovsky MC (eds) Invasive plants of California’s wildlands. UC Press, Berkeley, pp 203–208

    Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologica 144:1–11

    Article  Google Scholar 

  • Breton C, Tersac M, Bervillé A (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928

    Article  Google Scholar 

  • Burdon JJ, Marshall DR (1981) Biological control and the reproductive mode of weeds. J Appl Ecol 18:649–658

    Article  Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornuet JM, Ravigne V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics 11:401

    Article  PubMed Central  PubMed  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Tahiri H, Pardo C (2001) Karyological and taxonomic notes on Cytisus Desf. Sect. Spartopsis Dumort. and Sect. Alburnoides DC. (Genisteae, Leguminosae) from the Iberian Peninsula and Morocco. Bot J Linn Soc 135:43–50

    Article  Google Scholar 

  • Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size—implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? P Natl Acad Sci USA 97:7043–7050

    Article  CAS  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fu YX, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150:487–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3), http://www2.unil.ch/popgen/softwares/fstat.htm

  • Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Muller-Scharer H (2010) Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol 98:800–813

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Buckley YM, Lowe AJ (2007) Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Mol Ecol 16:4662–4673

    Article  CAS  PubMed  Google Scholar 

  • Kleist A, Jasieniuk M (2011) A molecular phylogenetic analysis of invasive and ornamental brooms and their relationships within the Genistoid legumes. Mol Phylogenet Evol 61:970–977

    Article  PubMed  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. P Natl Acad Sci USA 104:3883–3888

    Article  CAS  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Markers and sampling in ecological genetics. In: Lowe A, Harris S, Ashton P (eds) Ecological genetics: design, analysis, and application. Blackwell, London, pp 6–45

    Google Scholar 

  • Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122

    Article  Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–571

    Article  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Mueller-Schaerer H, Steinger T (2004) Classical biological control: exploiting enemy escape to manage plant invasions. Biol Invasions 10:859–874

    Google Scholar 

  • Mueller-Schaerer H, Schaffner U (2008) Classical biological control: exploiting enemy escape to manage plant invasions. Biol Invasions 10:859–874

    Google Scholar 

  • Novak SJ (2007) The role of evolution in the invasion process. P Natl Acad Sci USA 104:3671–3672

    Article  CAS  Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, MA, pp 201–228

  • Okada M, Ahmad R, Jasieniuk M (2007) Microsatellite variation points to local landscape plantings as sources of invasive pampas grass (Cortaderia selloana) in California. Mol Ecol 16:4956–4971

    Article  CAS  PubMed  Google Scholar 

  • Parker IM, Haubensak KA (2002) Comparative pollinator limitation of two non-native shrubs: do mutualisms influence invasions? Oecologia 130:250–258

    Google Scholar 

  • Pascual M, Chapuis MP, Mestres F, Balanyà J, Huey RB, Gilchrist GW, Serra L, Estoup A (2007) Introduction history of Drosophila subobscura in the New World: a microsatellite based survey using ABC methods. Mol Ecol 16:3069–3083

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Percy DM, Cronk QCB (2002) Different fates of island brooms: contrasting evolution in Adenocarpus, Genista, and Teline (Genisteae, Fabaceae) in the Canary Islands and Madeira. Am J Bot 89:854–864

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain JF (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Schonswetter P, Tribsch A, Barfuss M, Niklfeld H (2002) Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium Sternb. & Hoppe (Campanulaceae) in the European Alps. Mol Ecol 11:2637–2647

    Article  CAS  PubMed  Google Scholar 

  • Suarez Rodgriguez C (1991) Estudio de los relictos actuales del monte verde en Gran Canaria. Cabildo Insular de Gran Canaria, Las Palmas de Gran Canaria

    Google Scholar 

  • Thompson GD, Bellstedt DU, Byrne M, Millar MA, Richardson DM, Wilson JRU, Le Roux JJ (2012) Cultivation shapes genetic novelty in a globally important invader. Mol Ecol 21:3187–3199

    Article  PubMed  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1968) Flora Europaea Vol 2 Rosaceae to Umbelliferae. Cambridge University Press, UK

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

  • Wojciechowski MF (2011) Genista. In: Baldwin BG, Goldman DH, Keil DJ, Patterson RW, Rosatti TJ (eds) The Jepson Manual: vascular plants of California, 2nd edn. UC Press, Berkeley, pp 754–756

    Google Scholar 

Download references

Acknowledgments

Annabelle Kleist was supported by a Department of Plant Sciences Graduate Student Research award. Financial support for the research from the United States Department of Agriculture, Henry A. Jastro Research Scholarships, and the California Weed Science Society is gratefully acknowledged. Trammie Bui and Yuan Qin provided lab assistance. We thank Carla D’Antonio, UC Botanical Garden, Los Angeles County Arboretum and Botanic Garden, Desert Legume Program, Ökologisch-Botanischer Garten der Universität Bayreuth, Monrovia Nursery, RZ Nursery, Walter Andersen Nursery, and Merriments Gardens for plant specimens. We also thank Joseph DiTomaso for introducing us to the study system, and Libby Karn, Miki Okada, Dan Potter, and Kevin Rice for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annabelle Kleist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleist, A., Herrera-Reddy, A.M., Sforza, R. et al. Inferring the complex origins of horticultural invasives: French broom in California. Biol Invasions 16, 887–901 (2014). https://doi.org/10.1007/s10530-013-0546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0546-4

Keywords

Navigation