Biological Invasions

, Volume 16, Issue 1, pp 101–112 | Cite as

Latitudinal trends in herbivory and performance of an invasive species, common burdock (Arctium minus)

  • Dasvinder Kambo
  • Peter M. Kotanen
Original Paper


Plants often lose natural enemies (herbivores and pathogens) while invading new geographic regions, as predicted by the Enemy Release Hypothesis. However, a similar reduction in attack might occur at a more local scale within an invader’s range as plants in marginal areas escape enemies that fail to find them or cannot maintain local populations. In this study, we test the hypothesis that isolated populations near the northern edge of an invader’s range escape the enemies present in more southern populations, using the non-native monocarpic biennial, common burdock (Arctium minus), as a model species. In southern Ontario, this plant is attacked by a wide range of insect herbivores, including generalist leaf chewers as well as leaf-mining flies (Liriomyza arctii, Calycomyza flavinotum) and an abundant lepidopteran seed predator (Metzneria lappella). Surveys over an 815 km transect from temperate southern to boreal northern Ontario indicate that damage by all of these enemies declines sharply with latitude, while plants in more northern areas are slightly larger and more fecund. Critically, seed parasitism drops from more than 85 % in the south to less than 25 % in the north. These results indicate that populations of Arctium near this species’ northern limit escape many of their usual natural enemies, potentially counteracting less favourable environmental conditions. Such escape from enemies near invaders’ range margins may accelerate further spread, including expected migration in response to climate change.


Herbivory Latitudinal gradient Leaf miners Metzneria lappella Physical defense 



This work was supported by NSERC Research and Equipment Grants, with assistance from the Ontario Ministry of Natural Resources and the Koffler Scientific Reserve. We would especially like to thank Johanna Perz, Diane Krajewski, Saba Haroon, and Kirushanth Gnanachandran for their assistance in the field and the lab, and Nash Turley and two anonymous reviewers for comments on the manuscript. This study complies with all local laws.

Supplementary material

10530_2013_506_MOESM1_ESM.doc (107 kb)
Supplementary material 1 (DOC 107 kb)


  1. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386. doi: 10.1111/j.1600-0706.2009.17977.x CrossRefGoogle Scholar
  2. Alexander HM, Price S, Houser R, Finch D, Tourtellot M (2007) Is there reduction in disease and pre-dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. J Ecol 95:446–457. doi: 10.1111/j.1365-2745.2007.01228.x CrossRefGoogle Scholar
  3. Bach CE (1994) Effects of a specialist herbivore (Altica subplicata) on Salix cordata and sand dune succession. Ecol Monogr 64:423. doi: 10.2307/2937144 CrossRefGoogle Scholar
  4. Brändle M, Kühn I, Klotz S, Belle C, Brandl R (2008) Species richness of herbivores on exotic host plants increases with time since introduction of the host. Divers Distrib 14:905–912. doi: 10.1111/j.1472-4642.2008.00511.x CrossRefGoogle Scholar
  5. Bridle JJR, Vines TTH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147. doi: 10.1016/j.tree.2006.11.002 PubMedCrossRefGoogle Scholar
  6. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi: 10.1126/science.1206432 PubMedCrossRefGoogle Scholar
  7. Chun YJ, Van Kleunen M, Dawson W (2010) The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol Lett 13:937–946. doi: 10.1111/j.1461-0248.2010.01498.x PubMedGoogle Scholar
  8. Clausen JD, Keck D, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Institute of Washington, Publication 581Google Scholar
  9. Colautti RI, Ricciardi A, Grigorovich I, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733. doi: 10.1111/j.1461-0248.2004.00616.x CrossRefGoogle Scholar
  10. Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2:187–199. doi: 10.1111/j.1752-4571.2008.00053.x PubMedCentralCrossRefGoogle Scholar
  11. Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–Animal interactions: evolutionary ecology in tropical and temperate regions, Wiley, New York, pp 25–49Google Scholar
  12. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335. doi: 10.1146/annurev.ecolsys.27.1.305 CrossRefGoogle Scholar
  13. Condit R, Hubbell SP, Foster RB (1992) Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. Am Nat 140:261–286. doi: 10.1086/285412 PubMedCrossRefGoogle Scholar
  14. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ and Gradwell G (eds) Dynamics of populations: Proceedings of the advanced study institute on dynamics of numbers of populations, Center for Agricultural Publishing and Documentation, Wageningen, pp 298–312Google Scholar
  15. Darling E, Samis KE, Eckert CG (2008) Increased seed dispersal potential towards geographic range limits in a Pacific coast dune plant. New Phytol 178:424–435. doi: 10.1111/j.1469-8137.2007.02349.x PubMedCrossRefGoogle Scholar
  16. Dawson W, Burslem DFRP, Hulme PE (2009) Herbivory is related to taxonomic isolation, but not to invasiveness of tropical alien plants. Divers Distrib 15:141–147. doi: 10.1111/j.1472-4642.2008.00527.x CrossRefGoogle Scholar
  17. Engelkes T, Morriën E, Verhoeven KJFK, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, Van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948. doi: 10.1038/nature07474 PubMedCrossRefGoogle Scholar
  18. Garcia D, Zamora R, Gomez JM, Jordano P, Hodar JA (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:435–446. doi: 10.1046/j.1365-2745.2000.00459.x CrossRefGoogle Scholar
  19. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331. doi: 10.1016/j.tree.2010.03.002 PubMedCrossRefGoogle Scholar
  20. Gross R, Werner P (1983) Probabilities of survival and reproduction relative to rosette size in the common burdock (Arctium minus: Compositae). Am Midl Nat 109:184–193CrossRefGoogle Scholar
  21. Gross RS, Werner PA, Hawthorn WR (1980) The Biology of Canadian Weeds: Arctium minus (Hill). Can J Plant Sci 60:621–634CrossRefGoogle Scholar
  22. Harvey KJ, Nipperess DA, Britton DR, Hughes L (2012) Australian family ties: does a lack of relatives help invasive plants escape natural enemies? Biol Invasions. doi: 10.1007/s10530-012-0239-4
  23. Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  24. Hawkes CV (2007) Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am Nat 170:832–843. doi: 10.1086/522842 PubMedCrossRefGoogle Scholar
  25. Hawthorn WR, Hayne PD (1978) Seed production and predispersal seed predation in the biennial composite species, Arctium minus (Hill) Bernh. and A. lappa L. Oecologia 34:283–295. doi: 10.1007/BF00344907 CrossRefGoogle Scholar
  26. Hill SB, Kotanen PM (2011) Phylogenetic structure predicts capitular damage to Asteraceae better than origin or phylogenetic distance to natives. Oecologia 166:843–851. doi: 10.1007/s00442-011-1927-y PubMedCrossRefGoogle Scholar
  27. Hill SB, Kotanen PM (2012) Biotic interactions experienced by a new invader: effects of its close relatives at the community scale. Botany 90:35–42. doi: 10.1139/b11-084 CrossRefGoogle Scholar
  28. Hill JKJ, Griffiths HHMH, Thomas CDC (2011) Climate change and evolutionary adaptations at species’ range margins. Annu Rev Entomol 56:143–159. doi: 10.1146/annurev-ento-120709-144746 PubMedCrossRefGoogle Scholar
  29. Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27. doi: 10.1111/j.0030-1299.2005.13147.x CrossRefGoogle Scholar
  30. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi: 10.1016/S0169-5347(99)01764-4 PubMedCrossRefGoogle Scholar
  31. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501. doi: 10.1086/282687 CrossRefGoogle Scholar
  32. Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res 113:1–10. doi: 10.1029/2007JG000680 CrossRefGoogle Scholar
  33. Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358. doi: 10.1046/j.1469-8137.2003.00873.x CrossRefGoogle Scholar
  34. Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol Syst 39:321–342. doi: 10.1146/annurev.ecolsys.38.091206.095622 CrossRefGoogle Scholar
  35. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  36. Kennedy CEJ, Southwood TRE (1984) The number of species of insects associated with British trees: a re-analysis. J Anim Ecol 53:455. doi: 10.2307/4528 CrossRefGoogle Scholar
  37. Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23. doi: 10.1086/286054 PubMedCrossRefGoogle Scholar
  38. Kozlov MV (2007) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern? Clim Change 87:107–117. doi: 10.1007/s10584-007-9348-y CrossRefGoogle Scholar
  39. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi: 10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  40. Mackay J, Kotanen PM (2008) Local escape of an invasive plant, common ragweed (Ambrosia artemisiifolia L.), from above-ground and below-ground enemies in its native area. 1152–1161. doi: 10.1111/j.1365-2745.2008.01426.x
  41. Maron JL, Vila M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. doi: 10.1034/j.1600-0706.2001.950301.x CrossRefGoogle Scholar
  42. Mitchell CE, Agrawal A, Bever JD, Gilbert GS, Hufbauer R, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740. doi: 10.1111/j.1461-0248.2006.00908.x PubMedCrossRefGoogle Scholar
  43. Mitchell CE, Blumenthal D, Jarosík V, Puckett EE, Pysek P (2010) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol Lett 13:1525–1535. doi: 10.1111/j.1461-0248.2010.01543.x PubMedCentralPubMedCrossRefGoogle Scholar
  44. Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi: 10.1111/j.1365-2435.2010.01814.x CrossRefGoogle Scholar
  45. Morriën E, Engelkes T, Macel M, Meisner A, Van der Putten WH (2010) Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Ann Bot 105:843–848. doi: 10.1093/aob/mcq064 PubMedCrossRefGoogle Scholar
  46. Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281. doi: 10.1038/35005072 PubMedCrossRefGoogle Scholar
  47. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  48. Pennings SC, Zimmer M, Dias N, Sprung M, Davé N, Ho CK, Kunza A, McFarlin C, Mews M, Pfauder A, Salgado C (2007) Latitudinal variation in plant-herbivore interactions in European salt marshes. Oikos 116:543–549. doi: 10.1111/j.2007.0030-1299.15591.x Google Scholar
  49. Pennings SC, Ho CK, Salgado CS, Wieski K, Dave N, Kunza AE, Wason EL, Davé N (2009) Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology 90:183–195. doi: 10.1890/08-0222.1 PubMedCrossRefGoogle Scholar
  50. Peralta G, Fenoglio MS, Salvo A (2011) Physical barriers and corridors in urban habitats affect colonisation and parasitism rates of a specialist leaf miner. Ecol Entomol 36:673–679. doi: 10.1111/j.1365-2311.2011.01316.x CrossRefGoogle Scholar
  51. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System ( Mol Ecol Notes 7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x Google Scholar
  52. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430 CrossRefGoogle Scholar
  53. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  54. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436. doi: 10.1146/annurev.ecolsys.110308.120317 CrossRefGoogle Scholar
  55. Stanton-Geddes J, Tiffin P, Shaw RG (2012) Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology 93:1604–1613. doi: 10.1890/11-1701.1 PubMedCrossRefGoogle Scholar
  56. Strong DR, Lawton JH, Southwood R (1984) Insects on plants. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  57. Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314. doi: 10.1086/664183 PubMedCrossRefGoogle Scholar
  58. Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190. doi:10.1890/1540-9295(2004)002[0183:PPAIBP]2.0.CO;2CrossRefGoogle Scholar
  59. Tsaliki M, Diekmann M (2009) Fitness and survival in fragmented populations of Narthecium ossifragum at the species’ range margin. Acta Oecologica 35:415–421. doi: 10.1016/j.actao.2009.01.008 CrossRefGoogle Scholar
  60. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci 365:2025–2034. doi: 10.1098/rstb.2010.0037 CrossRefGoogle Scholar
  61. Vaupel A, Matthies D (2012) Abundance, reproduction, and seed predation of an alpine plant decrease from the center toward the range limit. Ecology 93:2253–2262. doi: 10.1890/11-2026.1 PubMedCrossRefGoogle Scholar
  62. Walther GR, Roques A, Hulme PE, Sykes MT, Pysek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarosík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi: 10.1016/j.tree.2009.06.008 PubMedCrossRefGoogle Scholar
  63. Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10. doi: 10.1890/10-0340.1 PubMedCrossRefGoogle Scholar
  64. Woods EC, Hastings AP, Turley NE, Heard SB, Agrawal AA (2012) Adaptive geographical clines in the growth and defense of a native plant. Ecol Monogr 82:149–168. doi: 10.1890/11-1446.1 CrossRefGoogle Scholar
  65. Zhang Y, Adams J, Zhao D (2011) Does insect folivory vary with latitude among temperate deciduous forests? Ecol Res 26:377–383. doi: 10.1007/s11284-010-0792-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations