Biological Invasions

, Volume 15, Issue 12, pp 2639–2649 | Cite as

Strong genetic differentiation due to multiple founder events during a recent range expansion of an introduced wall lizard population

  • Ulrich SchulteEmail author
  • Michael Veith
  • Valentin Mingo
  • Corrado Modica
  • Axel Hochkirch
Original Paper


Biological invasions represent ideal systems for the study of evolutionary processes associated with colonization events. It has been hypothesized that the genetic diversity is generally decreasing from the centre of the range to the margins due to multiple founder events. Invasive populations offer the opportunity to test this hypothesis at a fine spatial and temporal scale. We analysed the genetic structure of a large expanding non-native population of the Common Wall Lizard (Podarcis muralis) in Passau (Germany) using thirteen microsatellite loci. We analyzed the genetic structure and levels of admixture across a transect reflecting the expansion process and tested for a loss of genetic diversity and an increase of genetic differentiation from the centre to the invasion front. Our results demonstrate that significant genetic population structure can emerge rapidly at a small spatial scale. We found a trend for an increase in genetic differentiation and a decrease in genetic diversity from the invasion centre to the expanding range margin, suggesting that genetic drift is the major factor causing this pattern. The correlation between genetic diversity and average genetic differentiation was significant among sites. We hypothesize that the territoriality of P. muralis generates sufficient rates of noncontiguous and stratified dispersal from longer established sites to maintain significant genetic diversity at the invasion front. Simultaneously, territoriality might restrict the colonization success of migrants at established sites, so that in combination with founder events a strong differentiation arises.


Dispersal Founder event Genetic differentiation Invasive species Microsatellite Range expansion 



This work benefited from a grant of the ‘Deutsche Bundesstiftung Umwelt’ (DBU, Grant Number 27282/33/2). We thank Otto Assmann for his time and continuous help during field work in Passau, as well as Werner Mayer (Natural History Museum Vienna), Günter Hansbauer [Bavarian Environment Agency (LfU), Augsburg] and Michael Franzen (Natural History Museum Munich) for valuable information on the population. For sampling permits we thank Christian Santl and Britta Wirrer of the responsible administrations of Lower Bavaria.


  1. Altherr G (2007) From genes to habitats—effects of urbanisation and urban areas on biodiversity, PhD-thesis. Faculty of Life Sciences, Basel University, BaselGoogle Scholar
  2. Bellati A, Pellitteri-Rosa D, Sacchi R, Nistri A, Galimberti A, Casiraghi M, Fasola M, Galeotti P (2011) Molecular survey of morphological subspecies reveals new mitochondrial lineages in Podarcis muralis (Squamata: Lacertidae) from the Tuscan Archipelago (Italy). J Zool Syst Evol Res 49:240–250. doi: 10.1111/j.1439-0469.2011.00619 CrossRefGoogle Scholar
  3. Björklund M, Almqvist G (2010) Rapid spatial genetic differentiation in an invasive species, the round goby Neogobius melanostomus in the Baltic Sea. Biol Invasions 12:2609–2618. doi: 10.1007/s10530-009-9669 CrossRefGoogle Scholar
  4. Blondel J, Aronson J (2010) Biology and wildlife of the Mediterranean region, 2nd edn. Oxford University Press, USAGoogle Scholar
  5. Boag DA (1973) Spatial relationships among members of a population of wall lizards. Oecologia 12:1–13CrossRefGoogle Scholar
  6. Böhme MU, Schneeweiss N, Fritz U, Schlegel M, Berendonk TU (2007) Small edge populations at risk: genetic diversity of the green lizard (Lacerta viridis viridis) in Germany and implications for conservation management. Conserv Genet 8:555–563. doi: 10.1007/s10592-006-9191 CrossRefGoogle Scholar
  7. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and invasive plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070 CrossRefPubMedGoogle Scholar
  8. Boudjemadi K, Martin O, Simon JC, Estoup A (1999) Development and cross species comparison of microsatellite markers in two lizard species, Lacerta vivipara and Podarcis muralis. Mol Ecol 8:513–525CrossRefGoogle Scholar
  9. Brown RM, Taylor DH, Gist DH (1995) Home range ecology of an introduced population of the European wall lizard Podarcis muralis (Lacertilia; Lacertidae) in Cincinnati, Ohio. Am Midl Nat 133:344–359CrossRefGoogle Scholar
  10. Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64. doi: 10.1146/ CrossRefGoogle Scholar
  11. Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions. Trends Ecol Evol 27:57–64. doi: org/10.1016/j.tree.2011.09.010 CrossRefPubMedGoogle Scholar
  12. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained with the enemy release hypothesis? Ecol Lett 7:721–733. doi: 10.1111/j.1461-0248.2004.00616 CrossRefGoogle Scholar
  13. Cote J, Clobert J, Fitze PS (2007) Mother-offspring competition promotes colonization success. Proc Natl Acad Sci USA 104:9703–9708. doi: 10.1073/pnas.0703601104 CrossRefPubMedGoogle Scholar
  14. Dexel R (1986) Zur Ökologie der Mauereidechse Podarcis muralis an ihrer nördlichen Arealgrenze. II. Populationsstruktur und -dynamik. Salamandra 22:259–271Google Scholar
  15. Dlugosch KM, Hays CG (2008) Genotypes on the move: some things old and some things new shape the genetics of colonization during species invasions. Mol Ecol 17:4583–4585. doi: 10.1111/j.1365-294X.2008.03932 CrossRefPubMedGoogle Scholar
  16. Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11:701–709. doi: 10.1111/j.1461-0248.2008.01181 CrossRefPubMedGoogle Scholar
  17. Earl DA, vonHolt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. doi: 10.1007/s12686-011-9548-7. Version: v0.6.8 Oct 2011Google Scholar
  18. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-margin hypothesis and beyond. Mol Ecol 17:1170–1188CrossRefPubMedGoogle Scholar
  19. Edsman L (1990) Territoriality and competition in wall lizards, PhD thesis. Department of Zoology, University of Stockholm, StockholmGoogle Scholar
  20. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  21. Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet JM (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evolution 58:2021–2036PubMedGoogle Scholar
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  23. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351CrossRefPubMedGoogle Scholar
  24. Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren JG, Estoup A (2011) Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol 21:424–427CrossRefPubMedGoogle Scholar
  25. Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253CrossRefGoogle Scholar
  26. Gassert F, Schulte U, Husemann M, Ulrich W, Rödder D, Hochkirch A, Engel E, Meyer J, Habel JC (2013) From southern refugia to the northern range margin: genetic population structure of the common wall lizard, Podarcis muralis. J Biogeogr. doi: 10.1111/jbi.12109 Google Scholar
  27. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on G ST and D: forget G ST but not all statistics. Mol Ecol 19:3845–3852CrossRefPubMedGoogle Scholar
  28. Giovannotti M, Nisi-Cerioni P, Caputo V (2010) Mitochondrial DNA sequence analysis reveals multiple Pleistocene glacial refugia for Podarcis muralis (Laurenti, 1768) in the Italian Peninsula. Ital J Zool 77:277–288CrossRefGoogle Scholar
  29. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from
  30. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefPubMedGoogle Scholar
  31. Hedeen SE, Hedeen DL (1999) Railway-aided dispersal of an introduced Podarcis muralis population. Herpetol Rev 30:57–58Google Scholar
  32. Herborg LM, Weetman D, Van Oosterhout C, Hanfling B (2007) Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Mol Ecol 16:231–242CrossRefPubMedGoogle Scholar
  33. Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549CrossRefPubMedGoogle Scholar
  34. Hochkirch A, Damerau M (2009) Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol J Linn Soc 97:118–127CrossRefGoogle Scholar
  35. Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends Ecol Evol 14:328–330CrossRefPubMedGoogle Scholar
  36. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. v.3.22 Assessed 29 Feb 2012
  37. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  38. Kimura M, Weiss WH (1964) The stepping stone model of genetic structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedGoogle Scholar
  39. Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4:434–437CrossRefPubMedGoogle Scholar
  40. Kühnis JB, Schmocker H (2008) Zur Situation der Mauereidechse (Podarcis muralis) im Fürstentum Liechtenstein und im schweizerischen Alpenrheintal. Zeitschrift für Feldherpetologie 15:43–49Google Scholar
  41. Lentner A (1936) Herpetologische Beobachtungen bei Linz/Donau. BATK 1708:91Google Scholar
  42. Lescano N (2010) Population bottlenecks and range expansion in Podarcis muralis, a wall lizard introduced from Italy, Unpublished master thesis. University of Cincinnati, Arts and Sciences, Biological SciencesGoogle Scholar
  43. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell Publishing, Oxford, UKGoogle Scholar
  44. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Res 11:5–18CrossRefGoogle Scholar
  45. Nembrini M, Opplinger A (2003) Characterization of microsatellite loci in the wall lizard Podarcis muralis (Sauria: Lacertidae). Mol Ecol Notes 3:123–124CrossRefGoogle Scholar
  46. Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity 101:536–542CrossRefPubMedGoogle Scholar
  47. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedGoogle Scholar
  48. Perrings C, Mooney HA, Williamson MH (2010) Bioinvasions and globalization: ecology, economics, management, and policy. Oxford University Press, OxfordGoogle Scholar
  49. Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci USA 94:9996–10001CrossRefPubMedGoogle Scholar
  50. Pinho C, Sequeira F, Godinho R, Harris DJ, Ferrand N (2004) Isolation and characterization of nine microsatellite loci in Podarcis bocagei (Squamata: Lacertidae). Mol Ecol 4:286–288CrossRefGoogle Scholar
  51. Podnar M, Pinsker W, Haring E et al (2007) Unusual origin of a nuclear pseudogene in the Italian wall lizard: intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J Mol Evol 64:308–320CrossRefPubMedGoogle Scholar
  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  53. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: Where do we stand? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 97–126Google Scholar
  54. Ramakrishnan AP, Musial T, Cruzan MB (2000) Shifting dispersal modes at an expanding species’ range margin. Mol Ecol 19:1134–1146CrossRefGoogle Scholar
  55. Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293CrossRefPubMedGoogle Scholar
  56. Ryman N, Leimar O (2009) G ST is still as useful measure of genetic differentiation—a comment on Jost’s D. Mol Ecol 18:2084–2087CrossRefPubMedGoogle Scholar
  57. Sacks BN, Moore M, Statham MJ, Wittmer HU (2011) A restricted hybrid zone between native and introduced red fox (Vulpes vulpes) populations suggest reproductive barriers and competitive exclusion. Mol Ecol 20:326–341CrossRefPubMedGoogle Scholar
  58. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  59. Schulte U (2008) Die Mauereidechse. Laurenti-Verlag, BielefeldGoogle Scholar
  60. Schulte U, Thiesmeier B, Mayer M, Schweiger S (2008) Allochthone Vorkommen der Mauereidechse (Podarcis muralis) in Deutschland. Zeitschrift für Feldherpetologie 15:139–156Google Scholar
  61. Schulte U, Gebhard F, Heinz L, Veith M, Hochkirch A (2011a) Buccal swabs as a reliable non-invasive tissue sampling method for DNA analysis in the lacertid lizard Podarcis muralis. North West J Zool 7:325–328Google Scholar
  62. Schulte U, Bidinger K, Deichsel G, Hochkirch A, Thiesmeier B, Veith M (2011b) Verbreitung, geografische Herkunft und naturschutzrechtliche Aspekte allochthoner Vorkommen der Mauereidechse (Podarcis muralis) in Deutschland? Zeitschrift für Feldherpetologie 18:161–180Google Scholar
  63. Schulte U, Hochkirch A, Lötters S, Rödder D, Schweiger S, Weimann T, Veith M (2012a) Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Global Ecol Biogeogr 21:198–211CrossRefGoogle Scholar
  64. Schulte U, Gassert F, Geniez P, Veith M, Hochkirch A (2012b) Origin and genetic diversity of an introduced wall lizard population and its cryptic congener. Amphib Reptil 33:129–140CrossRefGoogle Scholar
  65. Schulte U, Veith M, Hochkirch A (2012c) Rapid genetic assimilation of native wall lizard populations (Podarcis muralis) through extensive hybridization with introduced lineages. Mol Ecol 21:4313–4326CrossRefPubMedGoogle Scholar
  66. Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Midl Nat 146:229–251CrossRefGoogle Scholar
  67. Short KH, Petren K (2011) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS ONE 6:e26258CrossRefPubMedGoogle Scholar
  68. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  69. Strayer DL, Evinver VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651CrossRefPubMedGoogle Scholar
  70. Stumpel AHP (2004) Reptiles and amphibians as targets for nature management. Alterra Scientific Contributions 13, Alterra Green World Research, Wageningen, 216 SGoogle Scholar
  71. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301CrossRefGoogle Scholar
  72. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581CrossRefPubMedGoogle Scholar
  73. Vähä J-P, Primmer CG (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72CrossRefPubMedGoogle Scholar
  74. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  75. Wilkinson S, Haley C, Alderson L, Wiener P (2011) An empirical assessment of individual-based population genetic statistical techniques: application to British pig breeds. Heredity 106:261–269CrossRefPubMedGoogle Scholar
  76. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJD, Richardson M (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. doi: 10.1016/j.tree.2008.10.007 CrossRefPubMedGoogle Scholar
  77. Wright S (1942) Isolation by distance. Genetics 28:114–138Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ulrich Schulte
    • 1
    Email author
  • Michael Veith
    • 1
  • Valentin Mingo
    • 1
  • Corrado Modica
    • 1
  • Axel Hochkirch
    • 1
  1. 1.Department of BiogeographyTrier UniversityTrierGermany

Personalised recommendations