Skip to main content

Advertisement

Log in

Effect of invader removal: pollinators stay but some native plants miss their new friend

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pes-caprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aizen M, Morales C, Morales J (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6(2):e31

    Article  PubMed  Google Scholar 

  • Akhalkatsi M, Pfauth M, Calvin CL (1999) Structural aspects of ovule and seed development and nonrandom abortion in Melilotus officinalis (Fabaceae). Protoplasma 108:211–223

    Article  Google Scholar 

  • Almeida-Neto M, Guimaraes P, Guimaraes PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Bartomeus I, Bosch J, Vilà M (2008a) High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann Bot 10:417–424

    Article  Google Scholar 

  • Bartomeus I, Vilà M, Santamaría L (2008b) Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155:761–770

    Article  PubMed  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes AL, Totland O, Hegland SJ, Nielsen ACN (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138:1–12

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  Google Scholar 

  • Brandes D (1991) Sociology and ecology of Oxalis pes-caprae L. in the Mediterranean region with special attention to Malta. Phytocoenologia 19:285–306

    Google Scholar 

  • Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83:2328–2336

    Article  Google Scholar 

  • Carvalheiro LG, Barbosa ERM, Memmott J (2008) Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J Appl Ecol 45:1419–1427

    Article  Google Scholar 

  • Castro S, Loureiro J, Santos C, Ater M, Ayensa G, Navarro L (2007) Distribution of flower morphs, ploidy level and sexual reproduction of invasive weed Oxalis pes-caprae in the western area of the Mediterranean Region. Ann Bot 99:507–517

    Article  PubMed  Google Scholar 

  • Castro S, Ferrero V, Costa J, João Sousa A, Castro M, Navarro L, Loureiro J (2013) Reproductive strategy of the invasive Oxalis pes-caprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction. Biol Invasions. doi:10.1007/s10530-013-0414-2

    Google Scholar 

  • Chittka L, Schürkens S (2001) Successful invasion of a floral market. Nature 411:653

    Article  PubMed  CAS  Google Scholar 

  • Conner JK, Rush S, Jennetten P (1996) Measurements of natural selection on floral traits in wild radish (Raphanus raphanistrum) I Selection through lifetime female fitness. Evolution 50:1127–1136

    Article  Google Scholar 

  • Costa J (2012) Sexual reproduction of the pentaploid short-styled Oxalis pes-caprae. Msc thesis, Centre for Functional Ecology, Department of Life Sciences, FCTUC

  • Costa J, Ferrero V, Loureiro J, Castro M, Navarro L, Castro S (2013) Sexual reproduction of the pentaploid, short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol. doi:10.1111/plb.12010

    PubMed  Google Scholar 

  • Dafni A, Pacini E, Nepi M (2005) Pollen and stigma biology. In: Dafni A, Kevan P, Husband B (eds) Practical pollination biology. Enviroquest, Ontario, pp 83–142

    Google Scholar 

  • Damanakis M, Markaki M (1990) Studies on the biology of Oxalis pes-caprae L. under field conditions in Crete Greece. Zizaniology 2:145–154

    Google Scholar 

  • Dietzsch AC, Stanley DA, Stout JC (2011) Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167:469–479

    Article  PubMed  Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Feinsinger P (1987) Effects of plant species on each other’s pollination: is community structure influenced? Trends Ecol Evol 2:123–126

    Article  PubMed  CAS  Google Scholar 

  • Flanagan RJ, Mitchell RJ, Knutowski D, Karron JD (2009) Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae). Am J Bot 96:809–815

    Article  PubMed  Google Scholar 

  • Forup ML, Henson KSE, Craze PG, Memmott J (2008) The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J Appl Ecol 45:742–752

    Article  Google Scholar 

  • Galil J (1968) Vegetative dispersal in Oxalis cernua. Am J Bot 55:68–73

    Article  Google Scholar 

  • Galloni M, Podda L, Vivarelli D, Cristofolini G (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam Fabaceae: Subfam Faboideae). Plant Syst Evol 266:147–164

    Article  Google Scholar 

  • Castroviejo S (coord gen) (1986–2012) Flora ibérica 1-8, 10-15, 17-18, 21. Real Jardín Botánico, CSIC, Madrid

  • Gettys RE, Johnson IJ (1944) The nature and inheritance of sterility in sweet clover, Melilotus officinalis Lam. J Am Soc Agron 36:28–37

    Article  Google Scholar 

  • Ghazou J (2004) Alien abduction: disruption of native plant-pollinator interactions by invasive species. Biotropica 36:156–164

    Google Scholar 

  • Gimeno I, Vilà M, Hulme PE (2006) Are islands more susceptible to plant invasion than continents? A test using Oxalis pes-caprae L. in the western Mediterranean. J Biogeogr 33:1559–1565

    Article  Google Scholar 

  • Grabas GP, Laverty TM (1999) The effect of purple loosestrife (Lythrum salicaria L.; Lythraceae) on the pollination and reproductive success of sympatric co-flowering wetland plants. Ecoscience 6:230–242

    Google Scholar 

  • Guimaraes PR, Guimaraes P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Modell Softw 21:1512–1513

    Article  Google Scholar 

  • Guitián J, Guitián P, Navarro L (1996) Spatio-temporal variation in pollination assemblage of Cornus sanguinea. Acta Oecol 17:285–295

    Google Scholar 

  • Gurusamy C (1999) The pattern of seed formation in cauliflower (Brassica oleracea L. var botrytis) with special reference to seed abortion. Can J Bot 77:1189–1192

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harder LD, Routley MB (2006) Pollen and ovule fates and reproductive performance by flowering plants. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 61–80

    Google Scholar 

  • Jakobsson A, Padrón B, Traveset A (2009) Competition for pollinators between invasive and native plants: effects of spatial scale of investigation (note). Ecoscience 16:138–141

    Article  Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • King VM, Sargent RD (2012) Presence of an invasive plant species alters pollinator visitation to a native. Biol Invasions 14:1809–1818

    Article  Google Scholar 

  • Larson DL, Royerb RA, Royerb MR (2006) Insect visitation and pollen deposition in an invaded prairie plant community. Biol Conserv 130:148–159

    Article  Google Scholar 

  • Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B 270:775–781

    Article  PubMed  Google Scholar 

  • Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550

    Article  PubMed  Google Scholar 

  • McKinney AM, Goodell K (2011) Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Pl Ecol 212:1025–1035

    Article  Google Scholar 

  • Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc R Soc B 269:2395–2399

    Article  PubMed  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611

    Article  PubMed  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1403–1413

    Article  PubMed  Google Scholar 

  • Montero-Castaño A, Vilà M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. J Ecol 100:884–893

    Article  Google Scholar 

  • Moragues E, Traveset A (2005) Effect of Carpobrotus spp on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122:611–619

    Article  Google Scholar 

  • Morales C, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728

    Google Scholar 

  • Muñoz AA, Cavieres LA (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J Ecol 96:59–467

    Article  Google Scholar 

  • Nasrallah JB, Yu S-M, Nasrallah ME (1988) Self-incompatibility genes of Brassica oleracea: expression, isolation, and structure (S locus/transcript localization). Proc R Soc B 85:5551–5555

    CAS  Google Scholar 

  • Olesen J, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Padrón B, Traveset A, Biedenweg T, Diaz D, Olesen JM, Nogales M (2009) Impact of invasive species in the pollination networks of two different archipelagos. PLoS One 4:e6275

    Article  PubMed  Google Scholar 

  • Poisot T, Lepennetier G, Martinez E, Ramsayer J, Hochberg ME (2011a) Resource availability affects the structure of a natural bacteria-bacteriophage community. Biol Lett 7:201–204

    Article  PubMed  Google Scholar 

  • Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME (2011b) A conceptual framework for the evolution of ecological specialisation. Ecol Lett 14:841–851

    Article  PubMed  Google Scholar 

  • Price MV, Waser NV, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116

    Article  Google Scholar 

  • Pütz N (1994) Vegetative spreading of Oxalis pes-caprae (Oxalidaceae). Pl Syst Evol 191:57–67

    Article  Google Scholar 

  • Rathcke B (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination biology. Academic Press, New York, pp 305–329

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions-the role of mutualisms. Biol Rev 75:65–93

    Article  PubMed  CAS  Google Scholar 

  • Romero Zarco C (1999) Vicia L. In: Castroviejo S (ed) Flora Iberica: plantas vasculares de la Península Iberica e islas Baleares. Real Jardín Botánico, Madrid, pp 360–417

  • Roubik DW (2001) Ups and downs in pollinator populations: when is there a decline? Conserv Ecol 5:2

    Google Scholar 

  • Sampson DR (1964) A one-locus self-incompatibility system in Raphanus raphanistrum. Can J Genet Cytol 6:435–445

    Google Scholar 

  • SAS Institute (1999) SAS/STAT user’s guide, release, 92nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Soler A (1983) Revisión de las especies de Fumaria de la Península Ibérica e Islas Baleares. Lagascalia 11:141–228

    Google Scholar 

  • Totland O, Nielsen A, Bjerknes A-L, Ohlson M (2006) Effects of an exotic plant and habitat disturbance on pollinator visitation and reproduction in a boreal forest herb. Am J Bot 93:868–873

    Article  PubMed  Google Scholar 

  • Traveset A, Richardson D (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen E, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200

    Article  Google Scholar 

  • Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127

    Google Scholar 

  • Veitch CR, Clout MN (2002) Turning the tide: the eradication of invasive species. Proceedings of the international conference on eradication of island invasives. IUCN Species Survival Commission, Aukland, NZ

  • Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276:3887–3893

    Article  PubMed  Google Scholar 

  • Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Wolfram Research (2007) Mathematica Version 60. Wolfram Research, Champaign, IL

    Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank D. Rojas for helping in network analysis, J. Memmott for kindly sharing network drawing codes, and A. Vale and R. Heleno for their helpful discussion of the manuscript. We also thank the COI herbarium (University of Coimbra) for allowing voucher specimens examination and Prof. J. Delgado Domingos and R. Trancoso (METEO-IST group, University of Lisbon, Portugal) for climate data supply. This work is financed by FEDER funds through the COMPETE Program and by Portuguese Foundation for Science and Technology (FCT) funds in the ambit of the project PTDC/BIA-BIC/110824/2009, by CRUP Acções Integradas Luso-Espanholas 2010 with the project E10/10, by MCI-Programa de Internacionalización de la I + D (PT2009-0068) and by the Spanish DGICYT (CGL2009-10466), FEDER funds from the European Union, and the Xunta de Galicia (INCITE09-3103009PR). FCT also supported the work of S. Castro (FCT/BPD/41200/2007) and J. Costa (CB/C05/2009/209; PTDC/BIA-BIC/110824/2009). The work of V. Ferrero was supported by the Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Ferrero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrero, V., Castro, S., Costa, J. et al. Effect of invader removal: pollinators stay but some native plants miss their new friend. Biol Invasions 15, 2347–2358 (2013). https://doi.org/10.1007/s10530-013-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0457-4

Keywords

Navigation