Skip to main content
Log in

Integration of exotic seeds into an Azorean seed dispersal network

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Seed dispersal plays a central role in plant ecology. Among animals, birds are particularly important seed dispersers, often incorporating exotic plants into their diets and facilitating their integration in the communities. Network theory offers a highly informative framework to study the structural and functional attributes of complex interactions networks. We used information from bird fecal samples to build a quantitative seed dispersal network for the last fragment of native laurel forest in the island of São Miguel—Azores with three specific objectives: (1) to assess the integration of exotic seeds into seed dispersal; (2) to evaluate the impact of exotic plants in network structure; (3) to test the potential of an exotic species to reduce the seed dispersal of a co-occurring native, via competition for seed dispersers. The seed dispersal network was based on the analysis of 1,121 droppings and described 74 unique interactions between 41 plant species and 7 bird species. Exotic seeds deeply infiltrated into the seed dispersal network forming the majority (59 %) of seeds in the droppings and including those of three globally invasive plants. Overall, birds depended equally on native and exotic fruits despite the lower abundance of the latter in the study area. In an experiment, birds did not show a preference for fruits of the exotic Leycesteria formosa over the native Vaccinium cylindraceum consuming them equally. However, the presence of the exotic plant negatively affected the number of native seeds dispersed, by diverting some of the consumers of the native fruits. Taken altogether the results reveal an alarming invasion level of seed dispersal systems in one of the last remnant native forests of the Azores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aslan CE, Rejmánek M (2010) Avian use of introduced plants: ornithologist records illuminate interspecific associations and research needs. Ecol Appl 20(4):1005–1020. doi:10.1890/08-2128.1

    Article  PubMed  Google Scholar 

  • Bartuszevige AM, Gorchov DL (2006) Avian seed dispersal of an invasive shrub. Biol Invasions 8(5):1013–1022. doi:10.1007/s10530-005-3634-2

    Article  Google Scholar 

  • Bascompte J, Jordano P, Olesen J (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433. doi:10.1126/science.1123412

    Google Scholar 

  • Berlow EL (1999) Strong effects of weak interactions in ecological communities. Nature 398(6725):330–334

    Article  CAS  Google Scholar 

  • Bersier LF, Banasek-Richter C, Cattin MF (2002) Quantitative descriptors of food-web matrices. Ecology 83(9):2394–2407. doi:10.2307/3071801

    Article  Google Scholar 

  • Blendinger PG, Villegas M (2011) Crop size is more important than neighborhood fruit availability for fruit removal of Eugenia uniflora (Myrtaceae) by bird seed dispersers. Plant Ecol 212(5):889–899. doi:10.1007/s11258-010-9873-z

    Article  Google Scholar 

  • Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivian-Smith G, Voigt FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43(5):848–857. doi:10.1111/j.1365-2664.2006.01210.x

    Article  Google Scholar 

  • Calviño-Cancela M (2011) Simplifying methods to assess site suitability for plant recruitment. Plant Ecol 212(8):1375–1383. doi:10.1007/s11258-011-9913-3

    Article  Google Scholar 

  • Carlo TA (2005) Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86(9):2440–2449. doi:10.1890/04-1479

    Article  Google Scholar 

  • Carvalheiro LG, Barbosa ERM, Memmott J (2008) Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J Appl Ecol 45(5):1419–1427. doi:10.1111/j.1365-2664.2008.01518.x

    Article  Google Scholar 

  • Ceia R, Heleno R, Ramos J (2009) Summer abundance and ecological distribution of passerines in native and exotic forests in São Miguel, Azores. Ardeola 56(1):25–39

    Google Scholar 

  • Ceia RS, Sampaio HL, Parejo SH, Heleno RH, Arosa ML, Ramos JA, Hilton GM (2011) Throwing the baby out with the bathwater: does laurel forest restoration remove a critical winter food supply for the critically endangered Azores bullfinch? Biol Invasions 13:93–104. doi:10.1007/s10530-010-9792-x

    Article  Google Scholar 

  • Chittka L, Schurkens S (2001) Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411(6838):653. doi:10.1038/35079676

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro NJ, Patrick DAG, Munisi B, Gupta V (2004) Role of dispersal in the invasion of an exotic tree in an East African submontane forest. J Trop Ecol 20:449–457. doi:10.1017/s026646740400152x

    Article  Google Scholar 

  • Côrtes MC, Cazetta E, Staggemeier VG, Galetti M (2009) Linking frugivore activity to early recruitment of a bird dispersed tree, Eugenia umbelliflora (Myrtaceae) in the Atlantic rainforest. Austral Ecol 34(3):249–258. doi:10.1111/j.1442-9993.2009.01926.x

    Article  Google Scholar 

  • Dias E, Elias R, Melo C, Mendes C (2007) Biologia e ecologia das florestas das Ilhas—Açores. In: Silva JS (ed) Açores e Madeira: a floresta das Ilhas, vol 6. Publico, Fundação Luso-Americana, Lisbon, pp 51–80

    Google Scholar 

  • Dormann C, Gruber B, Frund J (2008) Introducing the bipartite package: analysing ecological networks. R News 8(2):8–11

    Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open J Ecol 2:7–24

    Article  Google Scholar 

  • Duffy JE, Carinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10(6):522–538. doi:10.1111/j.1461-0248.2007.01037.x

    Article  PubMed  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558–567. doi:10.1046/j.1461-0248.2002.00354.x

    Article  Google Scholar 

  • Estrada E (2007) Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J Theor Biol 244(2):296–307. doi:10.1016/j.jtbi.2006.08.002

    Article  PubMed  Google Scholar 

  • Evans DM, Pocock MJO, Brooks J, Memmott J (2011) Seeds in farmland food-webs: resource importance, distribution and the impacts of farm management. Biol Conserv 144(12):2941–2950. doi:10.1016/j.biocon.2011.08.013

    Article  Google Scholar 

  • Fernandez-Palacios JM, de Nascimento L, Otto R, Delgado JD, Garcia-del-Rey E, Arevalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J Biogeogr 38(2):226–246. doi:10.1111/j.1365-2699.2010.02427.x

    Article  Google Scholar 

  • Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic networks. Ecol Lett 9(3):278–283. doi:10.1111/j.1461-0248.2005.00868.x

    Article  Google Scholar 

  • Foster JT, Robinson SK (2007) Introduced birds and the fate of Hawaiian rainforests. Conserv Biol 21(5):1248–1257. doi:10.1111/j.1523-1739.2007.00781.x

    Article  PubMed  Google Scholar 

  • Gibson R, Knott B, Eberlein T, Memmott J (2011) Sampling method influences the structure of plant–pollinator networks. Oikos 120(6):822–831

    Article  Google Scholar 

  • Global Invasive Species Database (2010) Global invasive species database. http://www.issg.org/database

  • González-Castro A, Traveset A, Nogales M (2012) Seed dispersal interactions in the Mediterranean region: contrasting patterns between islands and mainland. J Biogeogr. doi:10.1111/j.1365-2699.2012.02693.x

    Google Scholar 

  • Gosper CR, Stansbury CD, Vivian-Smith G (2005) Seed dispersal of fleshy-fruited invasive plants by birds: contributing factors and management options. Divers Distrib 11(6):549–558. doi:10.1111/j.1366-9516.2005.00195.x

    Article  Google Scholar 

  • Heleno RH, Ceia RS, Ramos JA, Memmott J (2009) The effect of alien plants on insect abundance and biomass: a food web approach. Conserv Biol 23(2):410–419. doi:10.1111/j.1523-1739.2008.01129.x

    Article  PubMed  Google Scholar 

  • Heleno RH, Lacerda I, Ramos JA, Memmott J (2010) Evaluation of restoration effectiveness: community response to the removal of alien plants. Ecol Appl 20(5):1191–1203. doi:10.1890/09-1384.1

    Article  PubMed  Google Scholar 

  • Heleno RH, Ross G, Everard A, Ramos JA, Memmott J (2011) On the role of avian seed predators as seed dispersers. Ibis 153:199–203. doi:10.1111/j.1474-919X.2010.01088.x

    Article  Google Scholar 

  • Heleno R, Devoto M, Pocock M (2012a) Connectance of species interaction networks and conservation value: is it any good to be well connected? Ecol Ind 14(1):7–10. doi:10.1016/j.ecolind.2011.06.032

    Article  Google Scholar 

  • Heleno R, Olesen J, Nogales M, Vargas P, Traveset A (2012b) Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proc R Soc B 280. doi:10.1098/rspb.2012.2112

  • Herrera CM (1995) Plant-vertebrate seed dispersal systems in the Mediterranean: ecological, evolutionary, and historical determinants. Annu Rev Ecol Syst 26:705–727. doi:10.1146/annurev.ecolsys.26.1.705

    Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal—connectance, dependence asymmetries, and coevolution. Am Nat 129(5):657–677. doi:10.1086/284665

    Article  Google Scholar 

  • Kawakami K, Mizusawa L, Higuchi H (2009) Re-established mutualism in a seed-dispersal system consisting of native and introduced birds and plants on the Bonin Islands, Japan. Ecol Res 24(4):741–748. doi:10.1007/s11284-008-0543-8

    Article  Google Scholar 

  • Linnebjerg JF, Hansen DM, Bunbury N, Olesen JM (2010) Diet composition of the invasive red-whiskered bulbul Pycnonotus jocosus in Mauritius. J Trop Ecol 26(03):347–350. doi:10.1017/S0266467409990617

    Article  Google Scholar 

  • MacArthur R, Wilson E (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malmborg PK, Willson MF (1988) Foraging ecology of avian frugivores and some consequences for seed dispersal in an Illinois Woodlot. Condor 90(1):173–186. doi:10.2307/1368446

    Article  Google Scholar 

  • MEA (2005) Millennium Ecosystem Assessment—ecosystems and human well-being: a synthesis. Island Press, Washington, DC

    Google Scholar 

  • Memmott J, Waser NM (2002) Integration of alien plants into a native flower–pollinator visitation web. Proc R Soc B 269(1508):2395–2399. doi:10.1098/rspb.2002.2174

    Article  PubMed  Google Scholar 

  • Memmott J, Gibson R, Carvalheiro L, Henson K, Heleno R, Lopezaraiza M, Pearce S (2007) The conservation of ecological interactions. In: Stewart AA, New TR, Lewis OT (eds) Insect conservation biology. The Royal Entomological Society, London, pp 226–244

    Chapter  Google Scholar 

  • Milton SJ, Wilson JRU, Richardson DM, Seymour CL, Dean WRJ, Iponga DM, Proches S (2007) Invasive alien plants infiltrate bird-mediated shrub nucleation processes in arid savanna. J Ecol 95(4):648–661. doi:10.1111/j.1365-2745.2007.01247.x

    Article  Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant–arbuscular mycorrhizal fungi. New Phytol 194(2):536–547. doi:10.1111/j.1469-8137.2011.04045.x

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15(7):278–285. doi:10.1016/S0169-5347(00)01874-7

    Article  PubMed  Google Scholar 

  • Olesen JM, Eskildsen LI, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8(3):181–192. doi:10.1046/j.1472-4642.2002.00148.x

    Article  Google Scholar 

  • Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM (2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE 4(7):e6275. doi:10.1371/journal.pone.0006275

    Article  PubMed  Google Scholar 

  • Padrón B, Nogales M, Traveset A, Vilà M, Martinez-Abrain A, Padilla DP, Marrero P (2011) Integration of invasive Opuntia spp. by native and alien seed dispersers in the Mediterranean area and the Canary Islands. Biol Invasions 13(4):831–844. doi:10.1007/s10530-010-9872-y

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramos JA (1996) Introduction of exotic tree species as a threat to the Azores bullfinch population. J Appl Ecol 33(4):710–722. doi:10.2307/2404942

    Article  Google Scholar 

  • Renne IJ, Barrow WC, Randall LAJ, Bridges WC (2002) Generalized avian dispersal syndrome contributes to Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) invasiveness. Divers Distrib 8(5):285–295. doi:10.1046/j.1472-4642.2002.00150.x

    Article  Google Scholar 

  • Saracco JF, Collazo JA, Groom MJ, Carlo TA (2005) Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico. Biotropica 37(1):81–87

    Article  Google Scholar 

  • Schaeffer H (2002) Flora of the Azores a field guide. Margraf Verlag, Weikersheim

    Google Scholar 

  • Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. doi:10.1111/j.1469-8137.2010.03402.x

    Article  PubMed  Google Scholar 

  • Silva LD (2001) Plantas vasculares invasoras no Arquipélago dos Açores - PhD thesis. University of the Azores, Ponta Delgada

  • Silva IA, Figueiredo RAd, Matos DMdS (2008) Feeding visit time of fruit-eating birds in Cerrado plants revisiting the predation risk model. Rev Bras Zool 25(4):682–688

    Article  Google Scholar 

  • Silva L, Moura M, Schaefer H, Rumsey F, Dias EF (2010) List of vascular plants (Tracheobionta). In: Borges PAV, Costa A, Cunha R et al (eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, pp 131–155

    Google Scholar 

  • SPEA (2005) Plano de gestão da ZPE Pico da Vara/Ribeira do Guilherme

  • Stansbury CD (2001) Dispersal of the environmental weed Bridal Creeper, Asparagus asparagoides, by Silvereyes, Zosterops lateralis, in south-western Australia. Emu 101(1):39–45. doi:10.1071/mu00069

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856. doi:10.1126/science.1188321

    Article  PubMed  Google Scholar 

  • Traveset A, Richardson DM (2011) Mutualisms: key drivers of invasions… key casualties of invasions. Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford

  • Tutin TG (1953) The vegetation of the Azores. J Ecol 41(1):53–61

    Article  Google Scholar 

  • Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276(1674):3887–3893. doi:10.1098/rspb.2009.1076

    Article  PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84(5):468–478

    Google Scholar 

  • Warren PH (1994) Making connections in food webs. Trends Ecol Evol 9(4):136–141. doi:10.1016/0169-5347(94)90178-3

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Williams PA (2006) The role of blackbirds (Turdus merula) in weed invasion in New Zealand. N Z J Ecol 30(2):285–291

    Google Scholar 

  • Williams PA, Karl BJ (1996) Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. N Z J Ecol 20(2):127–145

    Google Scholar 

  • Wolfram Research (1999) Mathematica, version 6.0. Champaign

Download references

Acknowledgments

We thank the LIFE-Priolo team, particularly Ricardo Ceia, Hugo Sampaio, Carlos Silva and Sandra Parejo for all the logistic support in the field, Márcia Santos, Bronwen Lester and Catarina Heleno for help during fieldwork, and Rachel Gibson and Mariano Devoto for sharing R code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben H. Heleno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heleno, R.H., Ramos, J.A. & Memmott, J. Integration of exotic seeds into an Azorean seed dispersal network. Biol Invasions 15, 1143–1154 (2013). https://doi.org/10.1007/s10530-012-0357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0357-z

Keywords

Navigation