The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia

Abstract

Climate change presents a new challenge for the management of invasive exotic species that threaten both biodiversity and agricultural productivity. The invasion of exotic perennial grasses throughout the globe is particularly problematic given their impacts on a broad range of native plant communities and livelihoods. As the climate continues to change, pre-emptive long-term management strategies for exotic grasses will become increasingly important. Using species distribution modelling we investigated potential changes to the location of climatically suitable habitat for some exotic perennial grass species currently in Australia, under a range of future climate scenarios for the decade centred around 2050. We focus on eleven species shortlisted or declared as the Weeds of National Significance or Alert List species in Australia, which have also become successful invaders in other parts of the world. Our results indicate that the extent of climatically suitable habitat available for all of the exotic grasses modelled is projected to decrease under climate scenarios for 2050. This reduction is most severe for the three species of Needle Grass (genus Nassella) that currently have infestations in the south-east of the continent. Combined with information on other aspects of establishment risk (e.g. demographic rates, human-use, propagule pressure), predictions of reduced climatic suitability provide justification for re-assessing which weeds are prioritised for intensive management as the climate changes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Acevedo P, Jiménez-Valverde A, Lobo JM, et al. (2012) Delimiting the geographical background in species distribution modeling. J Biogeog Online Early 39:1383–1390. doi:10.1111/j.1365-2699.2012.02713.x

    Google Scholar 

  2. Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141. doi:10.1046/j.1466-822X.2002.00275.x

    Article  Google Scholar 

  3. Barnard C (1964) Grasses and Grasslands. Macmillan & Company Ltd, Melbourne

    Google Scholar 

  4. Beaumont LJ, Gallagher RV, Downey PO et al (2009a) Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32:757–764. doi:10.1111/j.1600-0587.2009.05705.x

    Article  Google Scholar 

  5. Beaumont LJ, Gallagher RV, Thuiller W et al (2009b) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420. doi:10.1111/j.1472-4642.2008.00547.x

    Article  Google Scholar 

  6. Bourdôt GW, Lamoureaux SL, Watt MS et al. (2010) The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biol Invasions—Online First doi:10.1007/s10530-010-9905-6

  7. Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Chang Biol 15:1511–1521. doi:10.1111/j.1365-2486.2008.01824.x

    Article  Google Scholar 

  8. Broenniamm O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 2008(4):585–589. doi:10.1098/rsbl.2008.0254

    Article  Google Scholar 

  9. Brooks KJ, Setterfield SA, Douglas MM (2010) Exotic grass invasions: applying a conceptual framework to the dynamics of degradation and restoration in Australia’s tropical savannas. Restor Ecol 18:188–197. doi:10.1071/WF9980227

    Article  Google Scholar 

  10. Butler BDW, Fairfax RJ (2003) Buffel grass and fire in a gidgee and brigalow woodland: a case study from central Queensland. Ecol Manag Restor 4:120–125. doi:10.1046/j.1442-8903.2003.00146.x

    Article  Google Scholar 

  11. Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    PubMed  Article  CAS  Google Scholar 

  12. Clarke PJ, Latz PK, Albrecht DE (2005) Long-term changes in semi-arid vegetation: invasion of an exotic perennial grass has larger effects than rainfall variability. J Veg Sci 16:237–248. doi:10.1111/j.1654-1103.2005.tb02361.x

    Article  Google Scholar 

  13. Coutts-Smith AJ, Downey PO (2006) The impact of weeds on threatened biodiversity in New South Wales. Technical series no. 11. CRC for Australian Weed Management, Adelaide

  14. CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2011) Climate Change: Science and Solutions for Australia. In: Cleugh H, Stafford Smith M, Battaglia M, Graham P (eds). CSIRO Publishing. Melbourne. Australia

  15. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23:63–87. doi:10.1146/annurev.es.23.110192.000431

    Google Scholar 

  16. Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58. doi:10.1016/0006-3207(96)00017-1

    Article  Google Scholar 

  17. DeWet JMJ (1981) Grasses and the culture history of man. Ann Mo Bot Gard 68:87–104

    Article  Google Scholar 

  18. Downey PO, Johnson SB, Virtue JG et al (2010a) Assessing risk across the spectrum of weed management. CAB reviews: perspectives in agriculture. Veterinary Sci Nutr Nat Resour 5:038. doi:10.1079/PAVSNNR20100038

    Google Scholar 

  19. Downey PO, Scanlon TJ, Hosking JR (2010b) Prioritising alien plant species based on their ability to impact on biodiversity: a case study from New South Wales. Plant Prot Q 25:111–126

    Google Scholar 

  20. Downey PO, Williams MC, Whiffen LK et al (2010c) Managing alien plants for biodiversity outcomes—the need for triage. Invas Plant Sci Manag 3:1–11. doi:10.1614/IPSM-09-042.1

    Article  Google Scholar 

  21. Elith J, Graham CH, Anderson RP et al (2006) Novel methods to improve predictions of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  22. Elith J, Phillips SJ, Hastie T et al (2010a) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  23. Elith J, Kearney M, Phillips SJ (2010b) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. doi:10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  24. Fairfax RJ, Fensham RJ (2000) The effect of exotic pasture development on floristic diversity in central Queensland, Australia. Biol Conserv 94:11–21. doi:10.1016/S0006-3207(99)00169-X

    Article  Google Scholar 

  25. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  26. Fitzpatrick MC, Weltzin JF, Sanders NJ et al (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33. doi:10.1111/j.1466-8238.2006.00258.x

    Article  Google Scholar 

  27. Friedlingstein P, Houghton RA, Marland G et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812. doi:10.1038/ngeo1022

    Article  CAS  Google Scholar 

  28. Gallagher RV, Hughes L, Leishman MR et al (2010) Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol Invas 12:4049–4063. doi:10.1007/s10530-010-9814-8

    Article  Google Scholar 

  29. Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578–587. doi:10.1111/j.1466-8238.2006.00257.x

    Article  Google Scholar 

  30. Grice AC (2003) Weeds of Significance to the Grazing Industries of Australia. Meat and Livestock Australia Ltd, Sydney

    Google Scholar 

  31. Grice AC (2004) Perennial grass weeds in Australia: impacts, conflicts of interest and management issues. Plant Prot Q 19:42–47

    Google Scholar 

  32. Grice AC (2006) The impacts of invasive plant species on the biodiversity of Australian rangelands. Rangeland J 28:27–35. doi:10.1071/RJ06014

    Article  Google Scholar 

  33. Hellman J, Byers JE, Bierwagen BG et al (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543. doi:10.1111/j.1523-1739.2008.00951.x

    Article  Google Scholar 

  34. Heywood VH (1989) Patterns, extents and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological Invasions: A Global Perspective. Wiley, New York, pp 31–60

    Google Scholar 

  35. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  36. Hilbert DW, Hughes L, Johnson J et al (2007) Biodiversity conservation research in a changing climate - Workshop report: research needs and information gaps for the implementation of the key objectives of the National Biodiversity and Climate Change Action Plan. Department of the Environment and Water Resources, Canberra

    Google Scholar 

  37. Houston WA, Duivenvoorden LJ (2002) Replacement of littoral native vegetation with the ponded pasture grass Hymenachne amplexicaulis: effects on plant, macroinvertebrate and fish biodiversity of backwaters in the Fitzroy River, Central Queensland, Australia. Mar Freshw Res 53:1235–1244. doi:10.1071/MF01042

    Article  Google Scholar 

  38. IPCC (2007) Climate Change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK

  39. IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK, and New York, USA

  40. Kearney M, Simpson SJ, Raubenheimer D et al (2010) Modelling the ecological niche from functional traits. Philos T Roy Soc B 365:3469–3483. doi:10.1098/rstb.2010.0034

    Article  Google Scholar 

  41. Keir AF, Vogler WD (2006) A review of current knowledge of the weedy species Themeda quadrivalvis (grader grass). Trop Grasslands 40:193–201

    Google Scholar 

  42. Kleinbauer I, Dullinger S, Peterseil J et al (2010) Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390. doi:10.1016/j.biocon.2009.10.024

    Article  Google Scholar 

  43. Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713. doi:10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  44. Kottek MJ, Grieser C, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  45. Lemke D, Hulme PE, Brown JA et al (2011) Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. For Ecol Manag 262:139–149. doi:10.1016/j.foreco.2011.03.014

    Article  Google Scholar 

  46. Lenz TI, Moyle Croft JL, Facelli JM (2003) Direct and indirect effects of exotic annual grasses on species composition of a South Australian grassland. Aust Ecol 28:23–32. doi:10.1046/j.1442-9993.2003.01238.x

    Article  Google Scholar 

  47. Lonsdale WM (1994) Inviting trouble: introduced pasture species in northern Australia. Aust J Ecol 19:345–354. doi:10.1111/j.1442-9993.1994.tb00498.x

    Article  Google Scholar 

  48. Lunt ID (1990) The soil seed bank of a long-grazed Themeda triandra grassland in Victoria. Proc R Soc Vic 102:53–57

    Google Scholar 

  49. Marshall NA, Friedel N, van Klinken RD et al (2010) Considering the social dimension of invasive species: the case of buffel grass. Environ Sci Policy 14:327–338. doi:10.1016/j.envsci.2010.10.005

    Article  Google Scholar 

  50. Martin TG, Campbell S, Grounds S (2006) Weeds of Australian rangelands. Rangeland J 28:3–26. doi:10.1071/RJ06017

    Article  Google Scholar 

  51. Morin X, Lechowicz MJ (2008) Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol Lett 4:573–576. doi:10.1098/rsbl.2008.0181

    PubMed  Article  Google Scholar 

  52. Mott JJ (1986) Planned invasions of Australian tropical savannas. In: Groves RH, Burdon JJ (eds) Ecology of Biological Invasions: an Australian perspective. Australian Academy of Science, Canberra, pp 89–96

    Google Scholar 

  53. Mukherjee A, Christman MC, Overholt WA et al (2011) Prioritizing areas in the native range of Hygrophila for surveys to collect biological control agents. Biol Control 56:254–262. doi:10.1016/j.biocontrol.2010.11.006

    Article  Google Scholar 

  54. Nakicenovic N, Swart R (2000) Special Report on Emissions Scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  55. O’Donnell J, Gallagher RV, Wilson PD et al (2011) Invasion hotspots for non-native plants in Australia under current and future climates. Glob Chang Biol (Early View). doi:10.1111/j.1365-2486.2011.02537.x

    Google Scholar 

  56. Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distributions of invasive Eurasian annual grasses: a South African perspective. Clim Chang 94:87–103. doi:10.1007/s10584-009-9549-7

    Article  Google Scholar 

  57. Pattison RR, Mack RN (2008) Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Chang Biol 14:813–826. doi:10.1111/j.1365-2486.2007.01528.x

    Article  Google Scholar 

  58. Perkins SE, Pitman AJ, Holbrook NJ et al (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376. doi:10.1175/JCLI4253.1

    Article  Google Scholar 

  59. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  60. Prober SM, Thiele KR (2005) Restoring Australia’s temperate grasslands and grassy woodlands: integrating function and diversity. Ecol Manag Restor 6:16–27. doi:10.1111/j.1442-8903.2005.00215.x

    Article  Google Scholar 

  61. Richardson DM, Pysek P, Rejmanek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  62. Robertson MP, Peter CI, Villet MH et al (2003) Comparing models for predicting species’ potential distributions: a case study using correlative and mechanistic predictive modelling techniques. Ecol Model 164:153–167

    Article  Google Scholar 

  63. Rossiter NA, Setterfield SA, Douglas MM et al (2003) Testing the grass fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers Distrib 9:169–176. doi:10.1046/j.1472-4642.2003.00020.x

    Article  Google Scholar 

  64. Roura-Pascual N, Suarez AV, Gómez C et al (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc B-Biol 271:2527–2534. doi:10.1098/rspb.2004.2898

    Article  Google Scholar 

  65. Scott JK, Batchelor K, Ota N et al (2008) Modelling climate change impacts on sleeper and alert weeds: final report. CSIRO, Western Australia

    Google Scholar 

  66. Setterfield SA, Douglas MM, Hutley LB, Welch MA (2005) Effects of canopy cover and ground disturbance on establishment of an invasive grass in an Australia savanna. Biotropica 37:25–31. doi:10.1111/j.1744-7429.2005.03034.x

    Article  Google Scholar 

  67. Setterfield SA, Rossiter Rachor NA, Hutley LB, Douglas MM, Williams RJ (2010) Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers Distrib 16:854–861. doi:10.1111/j.1472-4642.2010.00688.x

    Article  Google Scholar 

  68. Sinden R, Jones R, Hester S et al (2004) The economic impact of weeds in Australia. Report for the CRC for Australian Weed Management

  69. Stohlgren TJ, Ma P, Kumar S et al (2010) Ensemble habitat mapping of invasive plant species. Risk Anal 30:224–235. doi:10.1111/j.1539-6924.2009.01343.x

    PubMed  Article  Google Scholar 

  70. Suppiah R, Hennessy K, Whetton P et al (2007) Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Aust Meteorol Mag 56:131–152

    Google Scholar 

  71. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1292

    PubMed  Article  CAS  Google Scholar 

  72. Thorp JR, Lynch R (2000) The Determination of Weeds of National Significance. National Weeds Strategy Executive Committee, Launceston

    Google Scholar 

  73. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362. doi:10.1046/j.1365-2486.2003.00666.x

    Article  Google Scholar 

  74. Thuiller W, Richardson DM, Pyšek P et al (2005) Niche based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250. doi:10.1111/j.1365-2486.2005.001018.x

    Article  Google Scholar 

  75. Trethowan PD, Robertson MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146. doi:10.1016/j.sajb.2010.07.007

    Article  Google Scholar 

  76. VanDerWal J, Shoo LP, Grahame C et al (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594. doi:10.1016/j.ecolmodel.2008.11.010

    Article  Google Scholar 

  77. Vaze J, Teng J, Chiew FHS (2011) Assessment of GCM simulations of annual and seasonal rainfall and daily rainfall distribution across south-east. Hydrol Process 25:1486–1497. doi:10.1002/hyp.7916

    Article  Google Scholar 

  78. Watt MS, Kriticos DJ, Lamoureaux SL et al (2011) Climate change and the potential global distribution of serrated tussock (Nassella trichotoma). Weed Sci 59:538–545. doi:10.1614/WS-D-11-00032.1

    Article  CAS  Google Scholar 

  79. Webber BL, Yates CJ, Le Maitre DC et al (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000. doi:10.1111/j.1472-4642.2011.00811.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Linkage grant (LP077658) in collaboration with the NSW Department of Environment and Climate Change (now the NSW Office of Environment and Heritage).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. V. Gallagher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2023 kb)

Supplementary material 2 (DOCX 4520 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gallagher, R.V., Englert Duursma, D., O’Donnell, J. et al. The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15, 961–975 (2013). https://doi.org/10.1007/s10530-012-0342-6

Download citation

Keywords

  • Alert List
  • Climate change
  • Exotic grasses
  • Maxent
  • Species distribution models
  • Weeds of national significance