Skip to main content

Advertisement

Log in

Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions are increasingly recognized as a potent force altering native ecosystems worldwide. Many of the best documented cases involve the massive invasions of North America by plant and animal taxa native to Europe. In this study, we use DNA barcoding to survey the occurrence and genetic structure of two major groups of soil invertebrates in both their native and introduced ranges: Collembola and earthworms. Populations of ten species of earthworms and five species of Collembola were barcoded from both continents. Most of these species exhibited a similar genetic structure of large and stable populations in North America and Europe, a result supporting a scenario of multiple invasions. This was expected for earthworm species involved in human economic activities, but not foreseen for Collembola species de facto unintentionally introduced. This study also establishes that invasive species surveys employing DNA barcoding gain additional resolution over those based on morphology as they allow evaluation of cryptic lineages exhibiting different invasion histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addison J (2009) Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biol Invasions 11:59–79

    Article  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  PubMed  CAS  Google Scholar 

  • Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B-Biol Sci 360:1813–1823

    Article  CAS  Google Scholar 

  • Bellinger PF, Christiansen KA, Janssens F (2011) Checklist of the Collembola of the World. In: http://www.collembola.org

  • Burtelow AE, Bohlen PJ, Groffman PM (1998) Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl Soil Ecol 9:197–202

    Article  Google Scholar 

  • Cameron EK, Bayne EM, Clapperton MJ (2007) Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience 14:482–490

    Article  Google Scholar 

  • Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forest of Alberta: insights into introduction mechanisms. Mol Ecol 17:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Chahartaghi M (2007) Trophic niche differentiation, sex ratio and phylogeography of European Collembola. Ph.D. Thesis

  • Chang CH, Rougerie R, Chen JH (2009) Identifying earthworms through DNA barcodes: pitfalls and promise. Pedobiologia 52:171–180

    Article  CAS  Google Scholar 

  • Chown SL, Sinclair BJ, van Vuuren BJ (2008) DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biol 31:651–655

    Article  Google Scholar 

  • Christiansen K, Bellinger P (1998) The collembola of North America North of the Rio Grande. A taxonomic analysis. Grinnell College, Grinnell, pp 1–1520

  • Convey P, Greenslade P, Arnold RJ et al (1999) Collembola of sub-Antarctic South Georgia. Polar Biol 22:1–6

    Article  Google Scholar 

  • Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765

    Article  Google Scholar 

  • Decaëns T, Jiménez JJ, Gioia C et al (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38

    Article  Google Scholar 

  • Decaëns T, Porco D, Rougerie R et al. (2012) Potential of DNA barcoding for earthworm research in taxonomy and ecology. Appl Soil Ecol (in press)

  • deWaard JR, Landry JF, Schmidt BC et al (2009) In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species. Biodivers Conserv 18:3825–3839

    Article  Google Scholar 

  • Eisenhauer N, Partsch S, Parkinson D et al (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110

    Article  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Gabriel AGA, Chown SL, Barendse J et al (2001) Biological invasions of Southern Ocean islands: the Collembola of Marion Island as a test of generalities. Ecography 24:421–430

    Article  Google Scholar 

  • Gates GE (1966) Requiem for megadrile utopias. A contribution toward the understanding of the earthworm fauna of North America. Proc Biol Soc Wash 79:239–254

    Google Scholar 

  • Greenslade P (2002a) Assessing the risk of exotic Collembola invading subantarctic islands: prioritising quarantine management. Pedobiologia 46:338–344

    Google Scholar 

  • Greenslade P (2002b) Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helictite 38:11–16

    Google Scholar 

  • Greenslade P (2008) Has survey effort of Australia’s islands reflected conservation and biogeographical significance? An assessment using Collembola. Eur J Soil Biol 44:458–462

    Article  Google Scholar 

  • Greenslade P, Convey P (2012) Exotic Collembola on subantarctic islands: pathways, origins and biology. Biol Invasions 14:405–417

    Article  Google Scholar 

  • Greenslade P, Wise KAJ (1984) Additions to the Collembolan fauna of the Antarctic. Trans R Soc S Aust 108:203–206

    Google Scholar 

  • Greenslade P, Simpson JA, Grgurinovic CA (2002) Collembola associated with fungal fruit-bodies in Australia. Pedobiologia 46:345–352

    Google Scholar 

  • Groffman PM, Bohlen PJ, Fisk MC et al (2004) Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems 7:45–54

    Article  CAS  Google Scholar 

  • Hajibabaei M, DeWaard JR, Ivanova NV et al (2005) Critical factors for assembling a high volume of DNA barcodes. Phil Trans R Soc B-Biol Sci 360:1959–1967

    Article  CAS  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  PubMed  Google Scholar 

  • Hale CM, Frelich LE, Reich PB et al (2008) Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. Oecologia 155:509–518

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B-Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hendrix PF, Callaham MA, Drake JM et al (2008) Pandora’s Box contained Bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst 39:593–613

    Article  Google Scholar 

  • Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda : Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can. J. Zool.–Rev. Can Zool 82:749–754

    Article  Google Scholar 

  • Holdsworth AR, Frelich LE, Reich PB (2008) Litter decomposition in earthworm–invaded northern hardwood forests: role of invasion degree and litter chemistry. Ecoscience 15:536–544

    Article  Google Scholar 

  • Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, New York, Tokyo

    Google Scholar 

  • Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  • James SW, Porco D, Decaëns T et al (2010) DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS ONE 5:e15629

    Article  PubMed  CAS  Google Scholar 

  • Janion C, Worland MR, Chown SL (2009) Assemblage level variation in springtail lower lethal temperature: the role of invasive species on sub-Antarctic Marion Island. Physiol Entomol 34:284–291

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • King KL, Greenslade P, Hutchinson KJ (1985) Collembolan associations in natural versus improved pastures of the New-England tableland, NSW: distribution of native and introduced species. Aust J Ecol 10:421–427

    Article  Google Scholar 

  • King RA, Tibble AL, Symondson WOC (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol Ecol 17:4684–4698

    Article  PubMed  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Maynard EA (1951) A monograph of the Collembola or springtail insects of New York state. Comstock Publishing Company Inc, Ithaca

    Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra the microfungal community in pine forest floor. Soil Biol Biochem 32:351–360

    Google Scholar 

  • McLean MA, Migge-Kleian S, Parkinson D (2006) Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol Invasions 8:1257–1273

    Article  Google Scholar 

  • Myburgh M, Chown SL, Daniels SR et al (2007) Population structure, propagule pressure, and conservation biogeography in the sub-Antarctic: lessons from indigenous and invasive springtails. Divers Distrib 13:143–154

    Article  Google Scholar 

  • Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Oliver I, Garden D, Greenslade PJ et al (2005) Effects of fertiliser and grazing on the arthropod communities of a native grassland in South-Eastern Australia. Agric Ecosyst Environ 109:323–334

    Article  Google Scholar 

  • Pérez-Losada M, Ricoy M, Marshall JC et al (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52:293–302

    Article  PubMed  Google Scholar 

  • Piearce TG (1972) Acid intolerant and ubiquitous Lumbricidae in selected habitats in North Wales. J Anim Ecol 41:397

    Article  Google Scholar 

  • Porco D, Bedos A, Deharveng L (2010a) Description and DNA barcoding assessment of the new species Deutonura gibbosa (Collembola: Neanuridae: Neanurinae), a common springtail of Alps and Jura. Zootaxa 2639:59–68

    Google Scholar 

  • Porco D, Rougerie R, Deharveng L et al (2010b) Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context: the example of Collembola. Mol Ecol Resour 10:942–945

    Article  PubMed  CAS  Google Scholar 

  • Porco D, Potapov M, Bedos A et al (2012) Cryptic diversity in the ubiquist species Parisotoma notabilis (Collembola, Isotomidae): a long used chimeric species? PLoS One (in press)

  • Potapov M (2001) Isotomidae. Staatliches Museum für Naturkunde Görlitz

  • Primack RB (2000) A primer of conservation biology, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Reynolds JW (1973) The earthworms of Connecticut (Oligochaeta: Lumbricidae, Megascolecidae and Sparganophilidae). Megadrilogica 1:1–4

    Google Scholar 

  • Richard B, Decaëns T, Rougerie R et al (2010) Re-integrating earthworm juveniles into soil biodiversity studies: species identification through DNA barcoding. Mol Ecol Resour 10:606–614

    Article  PubMed  CAS  Google Scholar 

  • Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF’s partnerships for enhancing expertise in taxonomy (PEET) as a model. Syst Biol 52:428–435

    PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Google Scholar 

  • Rougerie R, Decaëns T, Deharveng L et al (2009) DNA barcodes for soil animal taxonomy. Pesqui Agropecu Bras 44:789–802

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salmon JT (1941) The Collembolan Fauna of New Zealand, including a discussion of its distribution and affinities. Trans R Soc N Z 70:282–431

    Google Scholar 

  • Slabber S, Worland MR, Leinaas HP et al (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. J Insect Physiol 53:113–125

    Article  PubMed  CAS  Google Scholar 

  • Stach J (1966) On the Collembola of Newfoundland and Nova Scotia. Acta Zool Crac 11:211–222

    Google Scholar 

  • Suárez ER, Pelletier DM, Fahey TJ et al (2004) Effects of exotic earthworms on soil phosphorus cycling in two broadleaf temperate forests. Ecosystems 7:28–44

    Article  Google Scholar 

  • Suárez ER, Fahey TJ, Yavitt JB et al (2006) Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms. Ecol Appl 16:154–165

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tiunov AV, Hale CM, Holdsworth AR et al (2006) Invasion patterns of Lumbricidae into the previously earthworm–free areas of northeastern Europe and the western Great Lakes region of North America. Biol Invasions 8:1223–1234

    Article  Google Scholar 

  • Van De Wiel CCM, Van Der Schoot J, Van Valkenburg J et al (2009) DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides L.f.), from non-invasive relatives. Mol Ecol Resour 9:1086–1091

    Article  Google Scholar 

  • Vazquez DP, Simberloff D (2001) Taxonomic selectivity in surviving introduced insects in the United States. Kluwer Academic/Plenum Publ, New York

    Google Scholar 

  • Whalen JK (2004) Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada. Appl Soil Ecol 27:143–151

    Article  Google Scholar 

  • Wilson EO (2002) The future of life. Vintage Books, New York

    Google Scholar 

  • Winter M, Kuhn I, La Sorte FA et al (2010) The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Glob Ecol Biogeogr 19:332–342

    Article  Google Scholar 

  • Wironen M, Moore TR (2006) Exotic earthworm invasion increases soil carbon and nitrogen in an old-growth forest in southern Quebec. Can J For Res—Rev Can Rech For 36:845–854

    Article  Google Scholar 

  • Womersley H (1939) Primitive insects of South Australia. Silverfish Springtails and their allies, Adelaide

  • Yeates GW (1991) Impact of historical changes in land-use on the soil fauna. N Z J Ecol 15:99–106

    Google Scholar 

  • Yeates GW, Hawke MF, Rijkse WC (2000) Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. Biol Fertil Soils 31:391–406

    Article  Google Scholar 

  • Yosii R (1977) Critical checklist of the Japanese species of Collembola. Contrib Biol Lab Kyoto Univ 25:141–170

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to PDNH from NSERC and from the government of Canada through Genome Canada and the Ontario Genomics Institute, (SCALE) research federation through the “Functions and Determinants of Biodiversity” (BIODIV) program. D. Porco was supported by post-doctoral fellowships grant from the Conseil Régional de Haute Normandie and from NSERC. C. Erséus was supported by the Swedish Taxonomy Initiative (ArtDatabanken), and the Adlerbert Research Foundation. S. James was supported by a Marie Curie France Regions fellowship award to the Laboratoire EA 1293 ECODIV at the University of Rouen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Porco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10530_2012_338_MOESM1_ESM.eps

Supplementary Material Fig. 1 Frequency distribution of pairwise comparisons for intraspecific, interspecific and interlineage in Collembola (EPS 3042 kb)

10530_2012_338_MOESM2_ESM.eps

Supplementary Material Fig. 2 Frequency distribution of pairwise comparisons for intraspecific, interspecific and interlineage in Lumbricidae (EPS 2787 kb)

10530_2012_338_MOESM3_ESM.eps

Supplementary Material Fig. 3 Mismatch distributions for 5 Collembola species in North America (a–e) and Europe (f–j) (EPS 1881 kb)

10530_2012_338_MOESM4_ESM.eps

Supplementary Material Fig. 4 Mismatch distributions for 5 earthworm species in North America (a–e) and Europe (f–j) (EPS 1866 kb)

Supplementary material 5 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porco, D., Decaëns, T., Deharveng, L. et al. Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biol Invasions 15, 899–910 (2013). https://doi.org/10.1007/s10530-012-0338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0338-2

Keywords

Navigation