Biological Invasions

, Volume 15, Issue 4, pp 759–773 | Cite as

Population structure of the melon fly, Bactrocera cucurbitae, in Reunion Island

  • C. Jacquard
  • M. Virgilio
  • P. David
  • S. Quilici
  • M. De Meyer
  • H. Delatte
Original Paper

Abstract

The melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is an agricultural pest of major significance worldwide that primarily attacks cucurbit crops. In Reunion Island, it represents the main tephritid pest on cucurbits. In this paper, we provide a genetic characterization of populations of B. cucurbitae from Reunion Island and investigate their geographical origin using ten microsatellite loci at two mitochondrial gene fragments. Microsatellites reveal the occurrence of three different genetic clusters of B. cucurbitae in Reunion Island, all clearly distinguishable from their African and Asian relatives. These three clusters are sympatric and show no signs of recent bottlenecks. Levels of gene flow among clusters are relatively high, yet gene flow also occurs with populations from the African continent and, to a lesser extent, from Asia. The B. cucurbitae clusters show distinct distributions across eastern and western locations in Reunion Island (but not at different altitudes or between wild and cultivated host plants or between sampling periods), and their abundance is also correlated with the average amount of rainfall. Microsatellite and sequence analyses suggest Africa as the most probable source area for populations of B. cucurbitae in Reunion Island.

Keywords

Bactrocera cucurbitae Microsatellites Mitochondrial data Population structure Migration Tephritidae 

Supplementary material

10530_2012_324_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (PDF 62 kb)

References

  1. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  2. Baruffi L, Damiani G, Guglielmino CR, Bandi C, Malacrida AR, Gasperi G (1995) Polymorphism within and between populations of Ceratitis Capitata—comparison between Rapd and Multilocus enzyme electrophoresis data. Heredity 74:425–437PubMedCrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4
  4. Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836. doi:10.1111/j.1365-294X.2004.02101.x PubMedCrossRefGoogle Scholar
  5. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98(8):4563–4568PubMedCrossRefGoogle Scholar
  6. Belkhir K, Borsa P, Chikhi L, Raufaste N & Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)Google Scholar
  7. Bezzi M (1913) Indian Tephritids (fruit flies) in the collection of the Indian Museum, Calcutta. Mem Indian Mus 3:153–175Google Scholar
  8. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631. doi:10.1093/molbev/msl191 PubMedCrossRefGoogle Scholar
  9. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659PubMedCrossRefGoogle Scholar
  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014PubMedGoogle Scholar
  11. Delatte H, Virgilio M, Simiand C, Risterucci AM, De Meyer M, Quilici S (2010) Isolation and characterization of microsatellite markers from Bactrocera cucurbitae (Coquillett). Mol Ecol Resour 10:576–579PubMedCrossRefGoogle Scholar
  12. Dhillon MK, Singh R, Naresh JS, Sharma HC (2005) The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J Insect Sci 5:1–16Google Scholar
  13. Duyck PF, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29(5):511–520CrossRefGoogle Scholar
  14. Ekesi S, Nderitu PW, Chang CL (2007) Adaptation to and small-scale rearing of invasive fruit fly Bactrocera invadens (Diptera : Tephritidae) on artificial diet. Ann Entomol Soc Am 100(4):562–567CrossRefGoogle Scholar
  15. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19(19):4113–4130. doi:10.1111/j.1365-294X.2010.04773.x CrossRefGoogle Scholar
  16. Etienne J (1972) Les principales Trypétides nuisibles de l’île de La Réunion. Ann de la Societé Entomol de France 8(2):485–491Google Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  18. Excoffier L, Laval G, Schneider SE (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  19. Fletcher BS (1987) The biology of Dacine fruit flies. Annu Rev Entomol 32:115–144CrossRefGoogle Scholar
  20. Franks SJ, Pratt PD, Tsutsui ND (2011) The genetic consequences of a demographic bottleneck in an introduced biological control insect. Conserv Genet 12(1):201–211. doi:10.1007/s10592-010-0133-5 CrossRefGoogle Scholar
  21. Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14(14):4207–4219. doi:10.1111/j.1365-294X.2005.02740.x PubMedCrossRefGoogle Scholar
  22. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332. doi:10.1111/j.1755-0998.2009.02591.x PubMedCrossRefGoogle Scholar
  23. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237CrossRefGoogle Scholar
  24. Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5(3):153–165PubMedCrossRefGoogle Scholar
  25. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London (mathematical statistics of generalized linear model)Google Scholar
  26. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18(1):269–292. doi:10.1146/annurev.es.18.110187.001413 CrossRefGoogle Scholar
  27. Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann hum Genet 47:253–259Google Scholar
  28. Orian AJE, Moutia LA (1960) Fruit flies (Trypetidae) of economic importance in Mauritius. Revue Agricole et Sucrière de l’Ile Maurice 39:142–150Google Scholar
  29. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503CrossRefGoogle Scholar
  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedGoogle Scholar
  31. Raymond M, Rousset F (1995) Genepop (version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86(3):248–249Google Scholar
  32. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138. doi:10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  33. Ryckewaert P, Deguine JP, Brevault T, Vayssieres JF (2010) Fruit flies (Diptera: tephritidae) on vegetable crops in Reunion Island (Indian Ocean): state of knowledge, control methods and prospects for management. Fruits 65(2):113–130. doi:10.1051/fruits/20010006 CrossRefGoogle Scholar
  34. Subramanian S, Mohankumar S (2006) Genetic variability of the bollworm, Helicoverpa armigera, occurring on different host plants. J Insect Sci 6(26):1–8Google Scholar
  35. R Development Core Team (2011). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  36. Vayssières JF (1999) Les relations insectes-plantes chez les Dacini (Diptera: Tephritidae) ravageurs des Cucurbitaceae à La Réunion. Thèse de Doctorat du M.N.H.N, ParisGoogle Scholar
  37. Vayssières JF, Rey JY, Traoré L (2007) Distribution and host plants of Bactrocera cucurbitae in West and Central Africa. Fruits 62:391–396CrossRefGoogle Scholar
  38. Vayssières JF, Carel Y, Coubes M, Duyck PF (2008) Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environ Entomol 37(2):307–314PubMedCrossRefGoogle Scholar
  39. Virgilio M, De Meyer M, White IM, Backejau T (2009) African Dacus (Diptera: Tephritidae): molecular data and host plant associations do not corroborate morphology based classifications. Mol Phylogenet Evol 51(3):531–539. doi:10.1016/j.ympev.2009.01.003 PubMedCrossRefGoogle Scholar
  40. Virgilio M, Delatte H, Backeljau T, De Meyer M (2010) Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae). Mol Ecol 19(13):2713–2724. doi:10.1111/j.1365-294X.2010.04662.x PubMedCrossRefGoogle Scholar
  41. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  42. White IM (2006) Taxonomy of the Dacina (Diptera:Tephritidae) of Africa ans the middle east. Afr Entomol Memoir 2:1–156Google Scholar
  43. White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. C.A.B. International, Wallingford, UKGoogle Scholar
  44. White IM, De Meyer M, Stonehouse JM (2000) A Review of native and introduced fruit flies (Diptera: Tephritidae) in the Indian Ocean islands of Mauritius, Réunion and Seychelles. In: Price NS, Seewooruthun SI (eds) Proceedings of the Indian Ocean Commission regional fruit fly symposium. Indian Ocean Commission/European Union, Flic en Flac, Mauritius, pp 15–21Google Scholar
  45. Wu Y, Li ZH, Wu JJ (2009) Polymorphic microsatellite markers in the Melon Fruit Fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Mol Ecol Resour 9(5):1404–1406. doi:10.1111/j.1755-0998.2009.02678.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. Jacquard
    • 1
  • M. Virgilio
    • 2
  • P. David
    • 3
  • S. Quilici
    • 1
  • M. De Meyer
    • 2
  • H. Delatte
    • 1
  1. 1.UMR C53 PVBMT CIRAD-Université de La Réunion, CIRAD Pôle de Protection des PlantesRéunionFrance
  2. 2.Royal Museum for Central AfricaTervurenBelgium
  3. 3.UMR 5175, CNRS Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)Montpellier CedexFrance

Personalised recommendations