Skip to main content
Log in

Challenges in predicting invasive reservoir hosts of emerging pathogens: mapping Rhododendron ponticum as a foliar host for Phytophthora ramorum and Phytophthora kernoviae in the UK

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species can increase the susceptibility of ecosystems to disease by acting as reservoir hosts for pathogens. Invasive hosts are often sparsely recorded and not in equilibrium, so predicting their spatial distributions and overlap with other hosts is problematic. We applied newly developed methods for modelling the distribution of invasive species to the invasive shrub Rhododendron ponticum—a foliar reservoir host for the Phytophthora oomycete plant pathogens, P. ramorum and P. kernoviae, that threaten woodland and heathland habitat in Scotland. We compiled eleven datasets of biological records for R. ponticum (1,691 points, 8,455 polygons) and developed Maximum Entropy (MaxEnt) models incorporating landscape, soil and climate predictors. Our models produced accurate predictions of current suitable R. ponticum habitat (training AUC = 0.838; test AUC = 0.838) that corresponded well with population performance (areal cover). Continuous broad-leaved woodland cover, low elevation (<400 m a.s.l.) and intermediate levels of soil moisture (or Enhanced Vegetation Index) favoured presence of R. ponticum. The high coincidence of suitable habitat with both core native woodlands (54 % of woodlands) and plantations of another sporulation host, Larix kaempferi (64 % of plantations) suggests a high potential for spread of Phytophthora infection to woodland mediated by R. ponticum. Incorporating non-equilibrium modelling methods did not improve habitat suitability predictions of this invasive host, possibly because, as a long-standing invader, R. ponticum has filled more of its available habitat at this national scale than previously suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beales PA, Lane CR, Barton VC, Giltrap PM (2006) Phytophthora kernoviae on ornamentals in the UK. Bull OEPP 36:377–379

    Article  Google Scholar 

  • Beales P, Giltrap PM, Payne A, Ingram N (2008) A new threat to UK heathland from Phytophthora kernoviae on Vaccinium myrtillus in the wild. New Disease Rep 17:26

    Google Scholar 

  • Beales PA, Giltrap PM, Payne A, Ingram N (2009) A new threat to UK heathland from Phytophthora kernoviae on Vaccinium myrtillus in the wild. Plant Pathol 59:406

    Article  Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300

    Google Scholar 

  • Bradley BA, Oppenheimer M, Wilcove OS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521

    Article  Google Scholar 

  • Brasier C, Webber J (2010) Sudden Larch death. Nature 466:824–825

    Article  PubMed  CAS  Google Scholar 

  • Brasier C, Denman S, Brown A, Webber J (2004) Sudden Oak Death (Phytophthora ramorum) discovered on trees in Europe. Mycol Res 108:1108–1110

    Article  Google Scholar 

  • Brown LB, Allen-Diaz B (2009) Forest stand dynamics and sudden oak death: mortality in mixed-evergreen forests dominated by coast live oak. For Ecol Manag 257:1271–1280

    Google Scholar 

  • Chen PY, Fedosejevs G, Tiscareno-lopez M, Arnold JG (2006) Assessment of MODIS-EVI, MODIS-NDVI and vegetation-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico. Environ Monit Assess 119:69–82

    Article  PubMed  Google Scholar 

  • Colak AH, Cross JR, Rotherham ID (1998) Rhododendron ponticum in native and exotic environments, with particular reference to Turkey and the British Isles. J Pract Ecol Conserv 2:34–40

    Google Scholar 

  • Cook A, Marion G, Butler A, Gibson G (2007) Bayesian inference for the spatio-temporal invasion of alien species. Bull Math Biol 69:2005–2025

    Article  PubMed  Google Scholar 

  • Crall AW, Newman GJ, Jarnevich CS, Stohlgren TJ, Waller DM, Graham J (2010) Improving and integrating data on invasive species collected by citizen scientists. Biol Invas 12(10):3419–3428

    Google Scholar 

  • Cross JR (1975) Biological Flora of the British Isles: Rhododendron ponticum. J Ecol 63:345–364

    Article  Google Scholar 

  • Dehnen-Schmutz K, Perrings C, Williamson M (2004) Controlling Rhododendron ponticum in the British Isles: an economic analysis. J Environ Manage 70:323–332

    Article  PubMed  Google Scholar 

  • Denman S, Kirk SA, Brasier CM, Webber JF (2005) In vitro leaf inoculation studies as an indication of tree foliage susceptibility to Phytophthora ramorum in the UK. Plant Pathol 54:512–521

    Article  Google Scholar 

  • Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    Article  PubMed  Google Scholar 

  • Edwards C, Taylor SL (2008) A survey and strategic appraisal of rhododendron invasion and control in woodland areas in Argyll and Bute. A contract report for Perth Conservancy, Forestry Commission Scotland, prepared by Forest Research

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMMcC, Townsend-Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Philips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Fichtner EJ, Rizzo DM, Kirk SA, Webber JF (2011) Root infections may challenge management of invasive Phytophthora species in UK woodlands. Plant Dis 95:13–18

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fuller RM, Cox R, Clarke RT, Rothery P, Hill RA, Smith GM, Thomson AG, Brown NJ, Howard DC, Stott AP (2005) The UK land cover map 2000: planning, construction and calibration of a remotely sensed, user-oriented map of broad habitats. Int J Appl Earth Obs Geoinf 7:202–216

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Haas SE, Hooten MB, Rizzo D, Meentemeyer R (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol Lett 14:1108–1116

    Article  PubMed  Google Scholar 

  • Hansen EM (2008) Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environ Res 13:33–41

    Google Scholar 

  • Harris CM, Stanford HS, Edwards C, Travis JMJ, Park KJ (2011) Integrating demographic data and a mechanistic dispersal model to predict invasion spread of Rhododendron ponticum in different habitats. Ecol Informat 6:187–195

    Article  Google Scholar 

  • Harwood T, Xu X, Pautasso M, Jeger MJ, Shaw MW (2009) Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK. Ecol Model 220:3353–3361

    Article  Google Scholar 

  • Hill MO (2011) Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol Evol. doi:10.1111/j.2041-210X.2011.00146.x

    Google Scholar 

  • Hill M, Baker R, Broad G, Chandler PJ, Copp GH, Ellis J, Jones D, Hoyland C, Laing I, Longshaw M, Moore N, Parrott D, Pearman D, Preston C, Smith RM, Waters R (2005) Audit of non-native species in England. English Nature Research Reports

  • Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D (2004) Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol 19:446–452

    Article  PubMed  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Article  Google Scholar 

  • Jarnevich CS, Reynolds LV (2011) Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biol Invasions 13:153–163

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT)

  • Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jimenez-Valverde A, Peterson AT, Soberon J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Jones CC, Acker SA, Halpern CB (2010) Combining local- and large-scale models to predict the distributions of invasive species. Ecol Appl 20:311–326

    Article  PubMed  Google Scholar 

  • Kelly M, Meentemeyer R (2002) Landscape dynamics of the spread of Sudden Oak Death. Photogrammetr Eng Remote Sens 68:1001–1009

    Google Scholar 

  • Lamsal S, Cobb RC, Cushman JH, Meng Q, Rizzo DM, Meentemeyer RK (2011) Spatial estimation of the density and carbon content of host populations for Phytophthora ramorum in California and Oregon. For Ecol Manage 262:989–998

    Article  Google Scholar 

  • Lobo JM, Jimenez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lush M, Hewins E, Toogood S, Frith R (2007) Review of local record centres in the UK. In: NBNaNFoBR (ed) Report to Natural England on behalf of the Statutory Agencies, Just Ecology Limited

  • Magarey R, Fowler G, Colunga M, Smith B, Meentemeyer R (2008) Climate-host mapping of Phytophthora ramorum, causal agent of Sudden Oak Death. Sudden Oak Death Third Science Symposium, Hyatt Vineyard Creek, Santa Rosa, California, pp 269–275

  • Malmstrom CM, MCullough AJ, Johnson HA, Newton LA, Borer ET (2005) Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145:153–164

    Article  PubMed  Google Scholar 

  • Meentemeyer R, Lotz E, Rizzo D (2004) Mapping the risk of establishment and spread of Sudden Oak Death in California. For Ecol Manage 200:195–214

    Article  Google Scholar 

  • Meentemeyer RK, Anacker BL, Mark W, Rizzo DM (2008a) Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecol Appl 18:377–390

    Article  PubMed  Google Scholar 

  • Meentemeyer RK, Anacker BL, Rank NE (2008b) Influence of land-cover change on the spread of an invasive forest pathogen. Ecol Appl 18:159–171

    Article  PubMed  Google Scholar 

  • Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556

    Article  PubMed  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics. Am Nat 164(Supplement):S79–S89

    Article  PubMed  Google Scholar 

  • Rizzo D (2005) Exotic species and fungi: interactions with fungal plant and animal communities. In: Dighton J (ed) The fungal community. Its organization and role in the ecosystem. Taylor & Francis, London, pp 857–877

  • Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251

    Article  Google Scholar 

  • Rotherham ID, Read DJ (1988) Aspects of the ecology of Rhododendron ponticum with reference to its competitive and invasive properties. Aspects Appl Biol 16:327–335

    Google Scholar 

  • Scharlemann JPW, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GRW, Rogers DJ (2008) Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3:e1408

  • Stephenson CM, MacKenzie ML, Edwards C (2006) Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol Model 193:747–758

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomson AG, Radford GL, Norris DA, Good JEG (1993) Factors affecting the distribution and spread of Rhododendron on North Wales. J Environ Manage 39:199–212

    Article  Google Scholar 

  • Townsend Peterson A, Sánchez-Cordero V, Ben Beard C, Ramsey JM (2002) Ecologic niche modeling and potential reservoirs for Chagas Disease, Mexico. Emerg Infect Dis 8:662–667

    Article  PubMed  Google Scholar 

  • Tracey DR (2009) Phytophthora ramorum and Phytophthora kernoviae: the woodland perspective. EPPO Bull 39:161–167

    Article  Google Scholar 

  • Tyler C, Pullin AS, Stewart GB (2006) Effectiveness of management interventions to control invasion by Rhododendron ponticum. Environ Manage 37:513–522

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Vaclavik T, Kanaskie A, Hansen EM, Ohmann JL, Meentemeyer RK (2010) Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For Ecol Manage 260:1026–1035

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modelling: how far should you stray from what you know? Ecol Model 220:589–594

    Article  Google Scholar 

  • Waring RH, Coops NC, Fan W, Nightingale JM (2006) MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous U.S.A. Remote Sens Environ 103:218–226

    Article  Google Scholar 

  • Webber JF, Mullett M, Brasier CM (2010) Dieback and mortality of plantation Japanese larch (Larix kaempferi) associated with infection by Phytophthora ramorum. New Disease Reports 22:19. doi:10.5197/j.2044-0588.2010.022.019

  • Welk E (2004) Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife Lythrum salicaria in North America. Ecol Modell 179:551–567

    Google Scholar 

  • Zimmermann NE, Edwards JRTC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alexandra Schlenzig, SASA for advice on premise types, Jim McCleod and Steve Albon from MLURI for soil data, Prof. David Rogers and the Spatial Ecology and Epidemiology Group, Oxford University for MODIS data, Adam Butler for statistical advice and the Local Record Centres and contributing biological recorders for providing data. The authors gratefully acknowledge sponsorship from the UK Population Biology Network (UKPopNet) funded by Natural England, and the Natural Environment Research Council (with additional support from the Centre for Ecology and Hydrology) and funding from the Scottish Government under research contract CR/2008/55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethan V. Purse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purse, B.V., Graeser, P., Searle, K. et al. Challenges in predicting invasive reservoir hosts of emerging pathogens: mapping Rhododendron ponticum as a foliar host for Phytophthora ramorum and Phytophthora kernoviae in the UK. Biol Invasions 15, 529–545 (2013). https://doi.org/10.1007/s10530-012-0305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0305-y

Keywords

Navigation