Biological Invasions

, Volume 15, Issue 2, pp 395–406 | Cite as

Population genetics of Haminoea (Haloa) japonica Pilsbry, 1895, a widespread non-indigenous sea slug (Mollusca: Opisthobranchia) in North America and Europe

Original Paper

Abstract

Haminoea japonica is an opisthobranch mollusk with a large non-indigenous range. This species is a vector for a parasite that causes the human skin disease cercarial dermatitis, and may have negative effects on populations of native species. Molecular evidence from the mitochondrial cytochrome c oxidase I gene and the histone 3 nuclear gene indicates that previously published morphology-based hypotheses on the spread of H. japonica out of Japan are correct. The most likely explanation for the current range of the species, which includes Japan, Korea, France, Spain, Italy, Canada and the USA is a recent, human-mediated dispersal from Japanese populations. The highest levels of nucleotide and haplotype diversity are found in Japan. Non-indigenous populations have low levels of genetic diversity (indicating bottlenecking). Haplotypes that were detected in the non-indigenous range of H. japonica have only been found in two localities in the native range; these two localities are in north-eastern Japan. In addition, the haplotype network structure and Spatial Analysis of Molecular Variance results confirm the origins of non-indigenous populations most likely trace to north-eastern Japan, which is where most Pacific oyster exports to North America also originated. Because there are no major shipping ports in north-eastern Japan, ballast water is less likely to be the mechanism of dispersal. The results of this study provide important data for the development of policies and regulations aimed to prevent further spread of this species in non-indigenous ranges.

Keywords

Haplotype network Vector Dispersal pathway Opisthobranchia Molecular phylogeny Population genetics 

Notes

Acknowledgments

We would like to thank all those colleagues who provided or assisted in the collection of specimens used in this study: Kenji Okoshi, Tomohiro Kuwae, Masato Owada, Rie Nakano, Michiaki Hon-ma, Koh Dong Bum, Satoshi Wada, Douglas Eernisse, Patrick Krug, Atsuko Kuramochi, Takashi Kuramochi, Glenys Gibson, Annette Klussmann-Kolb, Jessica Goodheart, Jennifer Alexander, Jermaine Mahguib, Elysse Ornelas, Duncan Hanson, Jill Walker, Paul Callomon, Terry Gosliner, Kenji Kito, Kenji Ito, Kevin Lee, and Isabel Rey Fraile. Ryan Kelly provided COI sequences for comparison. This work was supported by the California State University Agricultural Research Institute (ARI), the Ernest Prete, Jr. Student Environmental Research Fellowship, the Southern California Academy of Sciences, Conchologists of America, the Houston Conchology Society, the Research, Scholarship and Creative Activity (RSCA) Program at California State University, and the California State University Council on Ocean Affairs, Science, and Technology (COAST). Andrew Cohen, Manami Kanno and Carol Stepien provided valuable comments that greatly improved the quality of this manuscript.

References

  1. Akaike H (1974) A new look at the statistical model identifications. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Álvarez LA, Martínez E, Cigarría J, Rolán E, Villani G (1993) Haminaea callidegenita Gibson and Chia, 1989 (Opisthobranchia: Cephalaspidea), a Pacific species introduced in European coasts. Iberus 11:59–65Google Scholar
  3. American Association of Port Authorities (2011) World port rankings (2010). http://www.aapa-ports.org/Industry/. Accessed 5 Oct 2011
  4. Baldwin JR, Lovvorn JR (1994) Habitats and tidal accessibility of the marine foods of dabbling ducks and brant in Boundary Bay, British Columbia. Mar Biol 120:627–638. doi:10.1007/BF00350084 CrossRefGoogle Scholar
  5. Barrett EM (1963) The California oyster industry. The Resources Agency of California Department of Fish and Game, Fish Bulletin 123Google Scholar
  6. Brant SV, Cohen AN, James D, Hui L, Hom A, Loker ES (2010) Cercarial dermatitis transmitted by exotic marine snail. Emer Infec Dis. doi:10.3201/eid1609.091664 Google Scholar
  7. Burge CA, Griffin FJ, Friedman CS (2006) Mortality and herpesvirus infections of the Pacific oyster Crassostrea gigas in Tomales Bay, California, USA. Dis Aquat Org 72:31–43. doi:10.3354/dao072031 PubMedCrossRefGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x PubMedCrossRefGoogle Scholar
  9. Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aus J Zool 46:419–437. doi:10.1071/ZO98048 CrossRefGoogle Scholar
  10. Council for Sendai International Commercial Port Development (2012) Statistical data. http://www.sendaicci.or.jp/minato. Accessed 28 April 2012
  11. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581. doi:10.1046/j.1365-294X.2002.01650.x PubMedCrossRefGoogle Scholar
  12. Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  14. Gibson GD, Chia FS (1989a) Description of a new species of Haminoea, Haminoea callidegenita (Mollusca: Opisthobranchia), with a comparison with two other Haminoea species found in the northeast Pacific. Can J Zool 67:914–922CrossRefGoogle Scholar
  15. Gibson GD, Chia FS (1989b) Developmental variability (pelagic and benthic) in Haminoea callidegenita (Opisthobranchia: Cephalaspidea) is influenced by egg mass jelly. Biol Bull 176:103–110CrossRefGoogle Scholar
  16. Gosliner TM, Behrens DW (2006) Anatomy of an invasion: systematics and distribution of the introduced opisthobranch snail, Haminoea japonica Pilsbry, 1895 (Gastropoda: Opisthobranchia: Haminoeidae). Proc Cal Acad Sci 57:1003–1010Google Scholar
  17. Grizel H, Héral M (1991) Introduction into France of the Japanese oyster (Crassostrea gigas). J Cons Int l’exp Mer 47:399–403Google Scholar
  18. Habe T (1952) Atydae in Japan. In: Kuroda T (ed) Illustrated catalogue of Japanese shells, vol 20. Malacological Society of Japan, Tokyo, pp 137–151Google Scholar
  19. Hase H, Yoon J-H, Koterayama W (1999) The current structure of the Tsushima warm current along the Japanese coast. J Oceanogr 55:217–235. doi:10.1007/s10872-006-0073-3 CrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754 PubMedCrossRefGoogle Scholar
  21. Ibaraki Prefecture Government (2011) Nakaminato station monthly temperature averages. http://www.pref.ibaraki.jp/bukyoku/nourin/suishi/honjyo/top/temp.htm. Accessed 5 Oct 2011
  22. Iglesias D, Rodríguez L, Montes J, Conchas RF, Pérez JL, Fernández M, Guerra A (2005) Estudio de viabilidad del cultivo de ostra rizada Crassostrea gigas (Thunberg, 1793) en diferentes Rías Gallegas. Primeros resultados biológico-productivos. Bol Inst Esp Oceanogr 21:293–309Google Scholar
  23. Kawasaki Y, Sugimoto T (1984) Ocean hydrodynamics of the Japan and East China Seas. In: Ichiye T (ed) Elsevier oceanography series, vol 39. Elsevier Science Publishing Company Inc., New York, pp 225–235Google Scholar
  24. Klinger T, Padilla DK, Britton-Simmons K (2006) Two invaders achieve higher densities in reserves. Aquatic Conserv: Mar Freshw Ecosyst 16:301–311. doi:10.1002/aqc.717 CrossRefGoogle Scholar
  25. Lavoie RE (2005) Oyster culture in North America—history, present and future. Oyster Res Inst News 17Google Scholar
  26. Le Berre I, Hily C, Lejart M, Gouill R (2009) Analyse spatiale de la prolifération de C. gigas en Bretagne. Cybergeo Eur J Geograp (online) 478. http://cybergeo.revues.org/22818. Accessed 15 Feb 2012. doi:10.4000/cybergeo.22818
  27. Mooi R, Smith VG, Burke MG, Gosliner TM, Piotrowski CN, Ritger RK (2007) Animals of San Francisco Bay. A field guide to the common benthic species. California Academy of Sciences, San FranciscoGoogle Scholar
  28. Moore TO, Moore JD (2008) Culture of oysters. In: Larinto T (ed) Status of the fisheries report 2008. California Department of Fish and Game, pp 21.1–21.14Google Scholar
  29. Nishimura S (1981) Sea and life of the earth: an introduction to marine biogeography. Kaimei-sha, Tokyo (in Japanese)Google Scholar
  30. Nylander JAA (2004) MrModeltest. ver. 2 (computer software distributed by the author). Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  31. Ogasawara K (1994) Neogene paleogeography and marine climate of the Japanese Islands based on shallow-marine molluscs. Palaeogeogr Paleoclimatol Palaeoecol 108:335–351. doi:10.1016/0031-0182(94)90241-0 CrossRefGoogle Scholar
  32. Ornelas-Gatdula E, DuPont A, Valdés A (2011) The tail tells the tale: taxonomy and biogeography of some Atlantic Chelidonura (Gastropoda: Cephalaspidea: Aglajidae) inferred from nuclear and mitochondrial gene data. Zool J Linn Soc 163:1077–1095. doi:10.1111/j.1096-3642.2011.00749.x CrossRefGoogle Scholar
  33. Ornelas-Gatdula E, Camacho-García Y, Schrödl M, Padula V, Hooker Y, Gosliner TM, Valdés A (2012) Molecular systematics of the ‘Navanax aenigmaticus’ species complex (Mollusca, Cephalaspidea): coming full circle. Zoo Scrip. doi:10.1111/j.1463-6409.2012.00538.x Google Scholar
  34. Pease WH (1868) Descriptions of marine Gasteropodae inhabiting Polynesia. Am J Conch 4:71–80Google Scholar
  35. Pilsbry HE (1895) Catalogue of the marine mollusks of Japan with descriptions of new species and notes of others collected by Frederick Stearns. Stearns, DetroitCrossRefGoogle Scholar
  36. Quayle DB (1964) Distribution of introduced marine mollusca in British Columbia waters. J Fish Res Bd Can 21:1155–1181CrossRefGoogle Scholar
  37. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, Kay MC (2005) Introduction of non-indigenous oysters: ecosystem effects and restoration implications. Ann Rev Ecol Evol Syst 36:643–689. doi:10.1146/annurev.ecolsys.36.102003.152638 CrossRefGoogle Scholar
  38. Sowerby J (1833) The genera of recent and fossil shells, for the use of students in conchology and geology. LondonGoogle Scholar
  39. Suzuki T (2011) Asian economic growth and Japan’s ports. In: 2011 Annual report of the national institute for land and infrastructure management, pp 2–10Google Scholar
  40. Xia X, Lemey P (2009) Assessing substitution saturation with dambe. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny, 2nd edn. Cambridge University Press, Cambridge, pp 615–630CrossRefGoogle Scholar
  41. Xia X, Xie Z (2001) dambe: data analysis in molecular biology and evolution. J Hered 92:371–373. doi:10.1093/jhered/92.4.371 PubMedCrossRefGoogle Scholar
  42. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phyl Evol 26:1–7. doi:10.1016/S1055-7903(02)00326-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesCalifornia State Polytechnic UniversityPomonaUSA
  2. 2.Graduate School of ScienceChiba UniversityInage-kuJapan

Personalised recommendations