Skip to main content

Advertisement

Log in

Patterns of genetic variation of a Lessepsian parasite

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Genetic studies of Lessepsian species often demonstrate the absence of a genetic bottleneck in a wide plethora of taxa, from plants to fish, but information regarding the genetic responses of their parasites in the newly colonized ecosystems is still lacking. This study compared genetic diversity of Red Sea (Eilat, Nabq), Suez canal (Ismailia) and Mediterranean (Rhodes, Tel Aviv) populations of the Monogenoidea Glyphidohaptor plectocirra by sequencing a portion of the mitochondrial CoxI gene. Despite evidence of a slight decrease in the genetic diversity of Mediterranean populations, a simulation analysis based on coalescent theory demonstrated the absence of significant bottlenecks, but there was directional selection along a cline moving further from the Suez canal. The absence of bottlenecks was congruent with that described for G. plectocirra hosts Siganus rivulatus and Siganus luridus, and reflected a common history of high propagule pressure during initial colonization, and constant or repeated gene flow from the Red Sea to the Mediterranean area. However, directional selection was peculiar to the parasites and likely originated from parasite genotype × environment interactions. Finally, an anisotropic contribution of Red Sea populations to the Lessepsian invasion was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Cons Biol 17:24–30

    Article  Google Scholar 

  • Anderson CNK, Ramakrishnan U, Chan YL, Hadly EA (2005) Serial SimCoal: a population genetic model for data from multiple populations and points in time. Bioinformatics 21:1733–1734

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Azzurro E, Golani D, Bucciarelli G, Bernardi G (2006) Genetics of the early stages of invasion of the Lessepsian rabbitfish Siganus luridus. J Exp Mar Biol Ecol 333:190–201

    Article  Google Scholar 

  • Bariche M, Saad M (2004) Settlement of the lessepsian blue-barred parrotfish Scarus ghobban (Teleostei: Scaridae) in the eastern Mediterranean. Marine Biodiversity Rec 1:e5

    Article  Google Scholar 

  • Ben-Tuvia A (1964) Two siganids fishes of Red Sea origin in the eastern Mediterranean. Bull Sea Fish Res Stn 37:3–9

    Google Scholar 

  • Berman T, Paldor N, Brenner S (2000) Simulation of wind-driven circulation in the Gulf of Eilat (Aqaba). J Mar Syst 26:349–365

    Article  Google Scholar 

  • Bernardi G, Golani D, Azzurro E (2009) The genetics of Lessepsian bioinvasions. In: Golani D, Appelbaum-Golani B (eds) Fish invasions of the mediterranean sea: change and renewal. Pensoft, Sofia, pp 35–56

  • Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21

    Article  Google Scholar 

  • Blouin MS, Yowell CA, Courtney CH, Dame JB (1995) Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141:1007–1014

    PubMed  CAS  Google Scholar 

  • Bonhomme F, Baranes A, Golani D, Harmelin-Vivien M (2003) Lack of mitochondrial differentiation in Red Sea and Mediterranean populations of the Lessepsian rabbitfish, Siganus rivulatus. Sci Mar 67:215–217

    Google Scholar 

  • Bucciarelli G, Golani D, Bernardi G (2002) Genetic cryptic species as biological invaders: the case of Lessepsian fish migrant, the hardyhead silverside Atherinomorus lacunosus. J Exp Mar Biol Ecol 273:143–149

    Article  Google Scholar 

  • Chan YL, Anderson CNK, Hadly EA (2006) Bayesian estimation of the timing and severity of a population bottleneck from ancient DNA. PLoS Genet 2(4):e59. doi:10.1371/journal.pgen.0020059

    Article  PubMed  Google Scholar 

  • Convention on the Conservation of European Wildlife and Natural Habitats (2002) Strasbourg, 23 October 2002. T-PVS, 11

  • Criscione CD, Blouin MS (2004) Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58:198–202

    PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  PubMed  CAS  Google Scholar 

  • Diamant A (1989) Lessepsian migrants as hosts: a parasitological assessment of rabbitfish Siganus luridus and S. rivulatus (Siganidae) in their original and new zoogeographical regions. In: Spanier E, Steinberger Y, Lurin M (eds) Environmental quality and ecosystem stability: vol IV-B. Environmental Quality ISEEQS Pub, Jerusalem, Israel

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • El-Rashidy HH, Boxshall GA (2011) Two new species of parasitic copepods (Crustacea) on two immigrant rabbitfishes (Family Siganidae) from the Red Sea. Syst Parasitol 79:175–193

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Excoffier L, Smouse P (1994) Using allele frequencies and geographic subdivision to reconstruct gene genealogies within a species. Molecular variance parsimony. Genetics 136:343–359

    PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Novembre J, Schneider S (2000) SimCoal: a general coalescent program for simulation of molecular data in interconnected populations with arbitrary demography. J Hered 91:506–509

    Article  PubMed  CAS  Google Scholar 

  • Galli P, Benzoni F, Strona G, Stefani F, Kritsky DC (2007) Monogenoidean parasites of fishes associated with coral reefs in the Ras Mohammed National Park, Egypt: preliminary results. Helminthologia 44:76–79

    Article  Google Scholar 

  • Golani D (1990) Environmentally-induced meristic changes in Lessepsian fish migrants, a comparison of source and colonizing populations. Bull Inst Océanogr (Monaco) 7:143–152

    Google Scholar 

  • Golani D, Appelbaum-Golani B (2010) Fish invasions of the Mediterranean Sea (Pensoft Series Faunistica)

  • Golani D, Ritte U (1999) Genetic relationship in goatfishes (Mullidae: Perciformes) of the Red Sea and the Mediterranean, with remarks on Suez Canal migrants. Sci Mar 63:129–135

    Google Scholar 

  • Golani D, Azzurro E, Corsini-Foka M, Falautano M, Andaloro F, Bernardi G (2007) Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant. Biol Lett 3:541–545

    Article  PubMed  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hassan M, Bonhomme F (2005) No reduction in neutral variation of mitochondrial and nuclear genes for a Lessepsian migrant, Upeneus moluccensis. J Fish Biol 66:865–870

    Article  Google Scholar 

  • Hassan M, Harmelin-Vivien M, Bonhomme F (2003) Lessepsian invasion without bottleneck: example of two rabbitfish species (Siganus rivulatus and Siganus luridus). J Exp Mar Biol Ecol 291:219–232

    Article  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15

    Article  Google Scholar 

  • Hirazawa N, Takano R, Hagiwara H, Noguchi M, Narita M (2010) The influence of different water temperatures on Neobenedenia girellae (Monogenea) infection, parasite growth, egg production and emerging second generation on amberjack Seriola dumerili (Carangidae) and the histopathological effect of this parasite on fish skin. Aquaculture 299:2–7

    Article  Google Scholar 

  • Iannotta MA, Patti FP, Ambrosino M, Procaccini G, Gambi MC (2007) Phylogeography of two species of Lysidice (Polychaeta, Eunicidae) associated to the seagrass Posidonia oceanica in the Mediterranean Sea. Mar Biol 150:1115–1126

    Article  Google Scholar 

  • Karako S, Achituv Y, Perl-Treves R, Katcoff D (2002) Asterina burtoni (Asteroidea; Echinodermata) in the Mediterranean and the Red Sea: does asexual reproduction facilitate colonization? Mar Ecol Prog Ser 234:139–145

    Article  Google Scholar 

  • Kochzius M, Blohm D (2005) Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea. Gene 347:295–301

    Article  PubMed  CAS  Google Scholar 

  • Kritsky DC, Galli P, Tingbao Y (2007) Dactylogyrids (Monogenoidea) parasitizing the gills of spinefoots (Teleostei, Siganidae): proposal of Glyphidohaptor n. gen., with description of two new species from the Great Barrier Reef, Australia, and redescription of G. plectocirra (Paperna, 1972) comb. n. from Ras Mohammed National Park. Egypt J Parasitol 93:39–46

    Article  Google Scholar 

  • Lai T, Curini-Galletti M, Casu M (2008) Genetic differentiation among populations of Minona ileanae (Platyhelminthes: Proseriata) from the Red Sea and the Suez Canal. J Exp Mar Biol Ecol 362:9–17

    Article  Google Scholar 

  • Lavee D, Ritte U (1994) Genetic variability and success in colonization in two intertidal mussels. In: Beaumont AR (ed) Genetic and evolution of aquatic organisms. Chapman and Hall, New York, pp 168–176

    Google Scholar 

  • Lavie B, Nevo E (1986) Genetic diversity of marine gastropods: contrasting strategies of Cerithium rupestre and C. scabridum in the Mediterranean Sea. Mar Ecol Prog Ser 28:99–103

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lim LHS (2002) Three new species of Pseudohaliotrema Yamaguti, 1953 (Monogenea: Ancyrocephalidae) from Siganus species (Siganidae) and the description of a mechanism for cross-insemination. J Nat Hist 36:1639–1660

    Article  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C, Michalakis Y (2003) Host dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57:288–296

    PubMed  Google Scholar 

  • McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108

    Article  Google Scholar 

  • Meinilä M, Kuusela J, Ziętara MS, Lumme J (2004) Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). Int J Parasitol 34:515–526

    Article  PubMed  Google Scholar 

  • Miura O, Torchin ME, Kuris AM, Hechinger RF, Chiba S (2006) Introduced cryptic species of parasites exhibit different invasion pathways. Proc Natl Acad Sci USA 103:19818–19823

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY

    Google Scholar 

  • Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647

    Article  PubMed  CAS  Google Scholar 

  • Paperna I (1972) Monogenea from Red Sea fishes. I. Monogenea of fish of the genus Siganus. Proc Helm Soc Wash 39:33–39

    Google Scholar 

  • Pasternak Z, Diamant A, Abelson A (2007) Co-invasion of a Red Sea fish and its ectoparasitic monogenean, Polylabris cf. mamaevi into the Mediterranean: observations on oncomiracidium behavior and infection levels in both seas. Parasitol Res 100:721–727

    Article  PubMed  Google Scholar 

  • Pérez JE, Nirchio M, Alfonsi C, Muñoz C (2006) Biological invasions. The genetic adaptation paradox. Biol Invert 8:1115–1121

    Article  Google Scholar 

  • Plaisance L, Rousset V, Morand S, Littlewood D (2008) Colonization of pacific Island by parasite of low dispersal ability: phylogeography of two monogenean species parasitizing butterflyfishes in the South Pacific Ocean. J Biogeogr 35:76–87

    Google Scholar 

  • Por FD (1978) Lessepsian migration—the influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer, Berlin, p 228

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Procaccini G, Acunto S, Famà P, Maltagliati F (1999) Morphological and genetic variability of Mediterranean populations of Halophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae) at different spatial scale. Mar Biol 135:181–189

    Article  Google Scholar 

  • Roman J, Darling A (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Sax DF, Brown JH (2000) The paradox of invasion. Global Ecol Biogeogr 9:363–372

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Shaked Y, Agnon A, Cohen C, Lazar B, Marco S, Sass E, Stein M (2002) Late Holocene shorelines at the Gulf of Elat: migrating shorelines despite tectonic and sea level stability. EGS Stephan Mueller (Spec Publ Ser) 2:105–111

    Google Scholar 

  • Šimková A, Plaisance L, Matĕjusová I, Morand S, Verneau O (2003) Phylogenetic relationships of the Dactylogyridae Bychowsky, 1933 (Monogenea: Dactylogyridea): the need for the systematic revision of the Ancyrocephalinae Bychowsky, 1937. Syst Parasitol 54:1–11

    Article  PubMed  Google Scholar 

  • Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429

    PubMed  CAS  Google Scholar 

  • Sinnappah ND, Lim LH, Rohde K, Tinsley R, Combes C, Verneau O (2001) A Paedomorphic parasite associated with a neotenic amphibian host: phylogenetic evidence suggests a revised systematic position for Sphyranuridae within anuran and turtle Polystomatoineans. Mol Phylogenet Evol 18:189–201

    Article  PubMed  CAS  Google Scholar 

  • Sirna Terranova MS, Lo Brutto S, Arculeo M, Mitton JB (2006) Population structure of Brachidontes pharaonis (P. Fisher, 1870) (Bivalvia, Mytilidae) in the Mediterranean Sea, and evolution of a novel mtDNA polymorphism. Mar Biol 150:89–101

    Article  Google Scholar 

  • Steinitz W (1927) Beiträge zur Kenntnis der Küstenfauna Palästinas. I. Pubblicazioni della Stazione Zoologica di Napoli 8:311–353

    Google Scholar 

  • Strona G, Stefani F, Galli P (2009) Field preservation of monogenean parasites for molecular and morphological analyses. Parasitol Int 58:51–54

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989a) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tajima F (1989b) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908

    Article  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953

    Article  PubMed  CAS  Google Scholar 

  • Vellend M, Harmon LJ, Lockwood JL, Mayfield MM, Hughes AR, Wares JP, Sax DF (2007) Effects of exotic species on evolutionary diversification. Trends Ecol Evol 22:481–488

    Article  PubMed  Google Scholar 

  • Walpole M, Almond R, Besancon C, Butchart SH, Campbell-Lendrum D, Carr GM, Collen B, Collette L, Davidson NC, Dulloo E, Fazel AM, Galloway JN, Gill M, Goverse T, Hockings M, Leaman DJ, Morgan DH, Revenga C, Rickwood CJ, Schutyser F, Simons S, Stattersfield AJ, Tyrrell TD, Vié JC, Zimsky M (2009) Tracking progress toward the 2010 biodiversity target and beyond. Science 325:1503–1504

    Article  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wielgoss S, Taraschewski H, Meyer A, Wirth T (2008) Population structure of the parasitic nematode Anguillicola crassus, an invader of declining North Atlantic eel stocks. Mol Ecol 17:3478–3495

    Article  PubMed  CAS  Google Scholar 

  • Wolinska J, King KC (2009) Environment can alter selection in host-parasite interactions. Trends Parasitol 25:236–244

    Article  PubMed  Google Scholar 

  • Zenetos A, Meriç E, Verlaque M, Galli P, Boudouresque CF, Giangrande A, Çinar ME, Bilecenoğlu M (2008) Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on foraminifera and parasites. Med Mar Sci 9:119–164

    Google Scholar 

  • Ziętara MS, Arndt A, Geets A, Hellemans B, Volckaert FAM (2000) The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae). J Parasitol 86:1368–1373

    Google Scholar 

Download references

Acknowledgments

The authors want to thank Laura Bernabò, Davide Parise and Andrea Guastamacchia for their help in the lab. We also acknowledge the Egyptian Environmental Affairs Agency rangers in Nabq, Egypt and Dr. Marco Milazzo for their help in fish sampling. This study has been partially supported by the Euro-Mediterranean Center for Climatic Change and the Italian Ministry for the Environment and the Territory (project: The impacts of biological invasions and climate change on the biodiversity of the Mediterranean Sea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Stefani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, F., Aquaro, G., Azzurro, E. et al. Patterns of genetic variation of a Lessepsian parasite. Biol Invasions 14, 1725–1736 (2012). https://doi.org/10.1007/s10530-012-0183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0183-3

Keywords

Navigation