Skip to main content
Log in

Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid-winter deacclimation in emerald ash borer

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The emerald ash borer (Agrilus planipennis, Coleoptera: Buprestidae) is a wood-boring invasive pest devastating North American ash (Fraxinus spp.). A. planipennis overwinters primarily as a freeze-avoiding prepupa within the outer xylem or inner bark of the host tree. The range of this species is expanding outward from its presumed introduction point in southwestern Michigan. We hypothesized that loss of cold tolerance in response to mid-winter warm spells could limit survival and northern distribution of A. planipennis. We determined whether winter-acclimatised A. planipennis prepupae reduced their cold tolerance in response to mid-winter warm periods, and whether this plasticity was reversible with subsequent cold exposure. Prepupae subjected to mid-winter warm spells of 10 and 15°C had increased supercooling points (SCPs) and thus reduced cold tolerance. This increase in SCP was accompanied by a rapid loss of haemolymph cryoprotectants and the loss of cold tolerance was not reversed when the prepupae were returned to −10°C. Exposure to temperatures fluctuating from 0 to 4°C did not reduce cold hardiness. Only extreme warming events for several days followed by extreme cold snaps may have lethal effects on overwintering A. planipennis populations. Thus, distribution in North America is likely to be limited by the presence of host trees rather than climatic factors, but we conclude that range extensions of invasive species could be halted if local climatic extremes induce unidirectional plastic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreadis SS, Milonas PG, Savopoulou-Soultani M (2005) Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana. Entomol Exp Appl 117:113–118

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation–a theoretical and empirical synthesis. Oxford University Press, New York

    Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM (2007) GenABEL: an R library for genorne-wide association analysis. Bioinformatics 23:1294–1296. doi:10.1093/bioinformatics/btm108ER

    Article  PubMed  CAS  Google Scholar 

  • Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Phil Trans R Soc Lond B 357:849–861. doi:10.1098/rstb.2002.1074ER

    Article  CAS  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994. doi:10.1242/jeb.037911ER

    Article  PubMed  CAS  Google Scholar 

  • Bale JS, Block W, Worland MR (2000) Thermal tolerance and acclimation response of larvae of the sub-Antarctic beetle Hydromedion sparsutum (Coleoptera: Perimylopidae). Polar Biol 23:77–84

    Article  Google Scholar 

  • Bentz BJ, Mullins DE (1999) Ecology of mountain pine beetle (Coleoptera : Scolytidae) cold hardening in the intermountain west. Environ Entomol 28:577–587

    Google Scholar 

  • Bray AM, Bauer LS, Haack RA, Poland T, Smith JJ (2007) Invasion genetics of emerald ash borer (Agrilus planipennis FAIRMAIRE) in North America. Proceedings from the third workshop on genetics of bark beetles and associated microorganisms 21–22

  • Cappaert D, McCullough DG, Poland TM, Siegert NW (2005) Emerald ash borer in North America: a research and regulatory challenge. Am Entomologist 51:152–165

    Google Scholar 

  • Caprio JM, Quamme HA, Redmond KT (2009) A statistical procedure to determine recent climate change of extreme daily meteorological data as applied at two locations in Northwestern North America. Clim Change 92:65–81. doi:10.1007/s10584-008-9474-1

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson‐Delmotte V, Codron F (2010) Winter 2010 in Europe: A cold extreme in a warming climate. Geophys Res Lett 37, doi:10.1029/2010GL044613

  • Chown SL, Nicolson SW (2004) Insect physiological ecology- mechanisms and patterns. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33(33):50–152

    Google Scholar 

  • Cooperative Emerald Ash Borer Project (2010) http://www.emeraldashborer.info/files/MultiState_EABpos.pdf. Accessed 23 November 2010

  • Crosthwaite JC, Sobek S, Lyons DB, Bernards MA, Sinclair BJ (2011) The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). J Insect Physiol 75:166–173

    Article  Google Scholar 

  • Duman JG, Walters KR, Sformo T, Carrasco MA, Nickell PK, Lin X, Barnes BM (2010) Antifreeze and ice-nucleator proteins. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, New York, pp 59–90

    Chapter  Google Scholar 

  • Elkinton JS, Preisser E, Boettner G, Parry D (2008) Factors influencing larval survival of the invasive browntail moth (Lepidoptera: Lymantriidae) in relict North American populations. Environ Entomol 37:1429–1437

    Article  PubMed  Google Scholar 

  • Environment Canada (2009) Canada’s top ten weather stories for 2008. http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=4EB93F4E-1. Accessed 8 December 2010

  • Evans AM, Gregoire TG (2007) A geographically variable model of hemlock woolly adelgid spread. Biol Invasions 9:369–382. doi:10.1007/s10530-006-9039-z

    Article  Google Scholar 

  • Fields PG, Fleurat-Lessard F, Lavenseau L, Febvay G, Peypelut L, Bonnot G (1998) The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J Insect Physiol 44:955–965

    Article  PubMed  CAS  Google Scholar 

  • Fortin G (2010) Variability and frequency of the freeze thaw cycles in Quebec region, 1977–2006. Can Geogr 54:196–208. doi:10.1111/j.1541-0064.2009.00291.x

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407. doi:10.1111/j.1365-2435.2007.01283.xER

    Article  Google Scholar 

  • Gibert P, Huey RB, Gilchrist GW (2001) Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography. Evolution 55:205–209

    PubMed  CAS  Google Scholar 

  • Han EN, Bauce E (1998) Timing of diapause initiation, metabolic changes and overwintering survival of the spruce budworm, Choristoneura fumiferana. Ecol Entomol 23:160–167

    Article  Google Scholar 

  • Hawes TC, Bale JS, Worland MR, Convey P (2007) Plasticity and superplasticity in the acclimation potential of the Antarctic mite Halozetes belgicae (Michael). J Exp Biol 210:593–601. doi:10.1242/jeb.02691ER

    Article  PubMed  CAS  Google Scholar 

  • Hayes CJ, Hofstetter RW, DeGomez TE, Wagner MR (2009) Effects of sunlight exposure and log size on pine engraver (Coleoptera: Curculionidae) reproduction in ponderosa pine slash in Northern Arizona, USA. Agricult For Entomol 11:341–350. doi:10.1111/j.1461-9563.2009.00433.xER

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007, Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC

  • Irwin JT, Lee RE (2000) Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). J Insect Physiol 46:655–661

    Article  PubMed  CAS  Google Scholar 

  • Irwin JT, Lee RE (2003) Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100:71–78

    Article  Google Scholar 

  • Kim Y, Song WR (2000) Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera : Noctuidae). Environ Entomol 29:868–873

    Article  Google Scholar 

  • Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman & Hall, New York, NY, pp 17–46

    Google Scholar 

  • Lombardero MJ, Ayres MP, Ayres BD, Reeve JD (2000) Cold tolerance of four species of bark beetle (Coleoptera : Scolytidae) in North America. Environ Entomol 29:421–432

    Article  Google Scholar 

  • Lyons DB, Jones GC (2005) The biology and phenology of the emerald ash borer. In: Gottschalk KW (ed) Proceedings, 16th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species, January 18–21, 2005, Annapolis, MD. Gen. Tech. Rep. NE-337 (abstract), pp 62–63

  • Marais E, Terblanche JS, Chown SL (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). J Insect Physiol 55:336–343. doi:10.1016/j.jinsphys.2008.11.016

    Article  PubMed  CAS  Google Scholar 

  • McCullough DG, Schneeberger NF, Katovich SA (2004) Pest alert Emerald Ash Borer NA-PR-02-04. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Area, State & Private Forestry

  • Milan JD, Harmon BL, Prather TS, Schwarzlander M (2006) Winter mortality of Aceria chondrillae, a biological control agent released to control rush skeletonweed (Chondrilla juncea) in the western United States. J Appl Entomol 130:473–479. doi:10.1111/j.1439-0418.2006.01090.xER

    Article  Google Scholar 

  • Natural Regions Committee (2006) Natural Regions and Subregions of Alberta. Government of Alberta, Pub. No. T/852

  • Natural Resources Canada (2010) The atlas of Canada- Weather. http://atlas.nrcan.gc.ca.proxy1.lib.uwo.ca:2048/site/english/learningresources/facts/superweather.html. Accessed 8 December 2010

  • Paradis A, Elkinton J, Hayhoe K, Buonaccorsi J (2008) Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitig Adapt Strat Glob Change 13:541–554

    Article  Google Scholar 

  • Parker BL, Skinner M, Gouli S, Ashikaga T, Teillon HB (1998) Survival of hemlock woolly adelgid (Homoptera: Adelgidae) at low temperatures. For Sci 44:414–420

    Google Scholar 

  • Parker BL, Skinner M, Gouli S, Ashikaga T, Teillon HB (1999) Low lethal temperature for hemlock woolly adelgid (Homoptera: Adelgidae). Environ Entomol 28:1085–1091

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pelini SL, Dzurisin JDK, Prior KM, Williams CM, Marsico TD, Sinclair BJ, Hellmann JJ (2009) Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc Natl Acad Sci USA 106:11160–11165. doi:10.1073/pnas.0900284106

    Article  PubMed  CAS  Google Scholar 

  • Rako L, Hoffmann AA (2006) Complexity of the cold acclimation response in Drosophila melanogaster. J Insect Physiol 52:94–104. doi:10.1016/j.jinsphys.2005.09.007

    Article  PubMed  CAS  Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142. doi:10.1111/j.1749-4877.2010.00196.xER

    Article  PubMed  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239. doi:10.1016/j.cryobiol.2006.06.006ER

    Article  PubMed  CAS  Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t–population crashes of established introduced species. Biol Invasions 6:161–172

    Article  Google Scholar 

  • Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262. doi:10.1016/S0169-5347(03)00014-4ER

    Article  Google Scholar 

  • Skinner M, Parker BL, Gouli S, Ashikaga T (2003) Regional responses of hemlock woolly adelgid (Homoptera : Adelgidae) to low temperatures. Environ Entomol 32:523–528

    Article  Google Scholar 

  • Slabber S, Worland MR, Leinaas HP, Chown SL (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: Indigenous and invasive species. J Insect Physiol 53:113–125. doi:10.1016/j.jinsphys.2006.10.010ER

    Article  PubMed  CAS  Google Scholar 

  • Storey JM, Storey KB (2004) Cold hardiness and freeze tolerance. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley-Liss, Hoboken, New Jersey, pp 473–503

    Chapter  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.r-project.org

  • Terblanche JS, Sinclair BJ, Klok CJ, McFarlane ML, Chown SL (2005) The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). J Insect Physiol 51:1013–1023. doi:10.1016/j.jinsphys.2005.04.016ER

    Article  PubMed  CAS  Google Scholar 

  • Tran JK, Ylioja T, Billings RF, Regniere J, Ayres MP (2007) Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecol Appl 17:882–899

    Article  PubMed  Google Scholar 

  • Trotter RT, Shields KS (2009) Variation in winter survival of the invasive hemlock woolly adelgid (Hemiptera: Adelgidae) across the eastern United States. Environ Entomol 38:577–587

    Article  PubMed  Google Scholar 

  • Ungerer MJ, Ayres MP, Lombardero MJ (1999) Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). J Biogeogr 26:1133–1145

    Article  Google Scholar 

  • USDA–APHIS (2009) Emerald Ash Borer Program Manual, Agrilus planipennis (Fairmaire) USDA–APHIS–PPQ–Emergency and Domestic Programs–Emergency Planning, Riverdale, Maryland

  • Wang XY, Yang ZQ, Gould JR, Zhang YN, Liu GJ, Liu ES (2010) The biology and ecology of the emerald ash borer, Agrilus planipennis, in China. J Insect Sci 10(128):1–23.http://www.insectscience.org/10.128/

  • Wei X, Wu Y, Reardon R, Sun TH, Lu M, Sun JH (2007) Biology and damage traits of emerald ash borer (Agrilus planipennis Fairmaire) in China. Insect Science 14:367–373. doi:10.1111/j.1744-7917.2007.00163.xER

    Article  Google Scholar 

  • Whitman DW, Agrawal AA (2009) What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects: mechanisms and consequences. Science Publishers, Enfield, New Hampshire, pp 1–62

    Chapter  Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524

    Article  Google Scholar 

  • Zeng JP, Ge F, Su JW, Wang Y (2008) The effect of temperature on the diapause and cold hardiness of Dendrolimus tabulaeformis (Lepidoptera: Lasiocampidae). Eur J Entomol 105:599–606

    Google Scholar 

Download references

Acknowledgments

This project was supported by an NSERC (Natural Sciences and Engineering Research Council of Canada) Strategic Grant to B.J.S. & D.B.L. and by the Canadian Foundation for Innovation. We are grateful to the Canadian Food Inspection Agency, the Canadian Forest Service, and the Sarnia Golf and Curling Club for advice and access to field sites. Part of this work was conducted in the Biotron Centre for Experimental Climate Change Research at the University of Western Ontario. Thanks also to David (Xinyang) Bing, Joshua Farhi and Greg Watkinson, who assisted with lab and field work. We are grateful to two anonymous referees for their valuable contributions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Sobek-Swant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobek-Swant, S., Crosthwaite, J.C., Lyons, D.B. et al. Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid-winter deacclimation in emerald ash borer. Biol Invasions 14, 115–125 (2012). https://doi.org/10.1007/s10530-011-9988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-9988-8

Keywords

Navigation