Skip to main content

Evaluation of stochastic gravity model selection for use in estimating non-indigenous species dispersal and establishment

Abstract

Predicting dispersal of nonindigenous species (NIS) is an essential component of risk analysis and management, as preventative measures are most readily applied at this stage of the invasion sequence. Gravity models provide one of the most useful techniques available to model dispersal of nonindigenous invasive species (NIS) across heterogeneous landscapes, as these models are able to capture transport patterns of recreational boaters who are dominant vectors responsible for aquatic NIS dispersal. Despite the widespread use of gravity models in forecasting biological invasions, different classes of gravity models have not been evaluated regarding their comparative ability to capture recreational transport patterns and subsequent use in predicting NIS establishment. Here we evaluate model selection between unconstrained, total-flow-constrained, production-constrained and doubly-constrained stochastic gravity models to assess dispersal of the spiny waterflea Bythotrephes between Ontario lakes. Differences between the models relate to the amount of data required and constraints under which calculations of source/destination interactions are made. For each class of gravity model, we then estimated the probability of a lake having established Bythotrephes populations by modeling the relationship between empirical presence/absence data and inbound recreational traffic (i.e. propagule pressure) via boosted regression. The unconstrained gravity model provided the best fit to observed traffic patterns of recreational boaters. However, when output from the gravity models was used to predict Bythotrephes establishment, the doubly-constrained gravity model provided the strongest relationship between inbound recreational traffic and observed Bythotrephes presence/absence, followed by the production-constrained model. Our results indicate production-constrained gravity models offer an acceptable balance between modeling recreational boater traffic and their utility to estimate establishment probabilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  2. Anas A (1983) Discrete choice theory, information-theory and the multinomial logit and gravity models. Trans Res B Methodol 17:13–23

    Article  Google Scholar 

  3. Anderson JE (1979) Theoretical foundation for the gravity equation. Am Econ Rev 69:106–116

    Google Scholar 

  4. Black JA, Salter RJ (1975) A statistical evaluation of the accuracy of a family of gravity models. Proc Instit Civil Eng Part 2 Res Theor 59:1–20

    Google Scholar 

  5. Bockstael NE, McConnell KE, Strand IE (1989) A random utility model for sportfishing: some preliminary results for Florida. Mar Res Econ 6:245–260

    Google Scholar 

  6. Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788

    Article  Google Scholar 

  7. Bossenbroek JM, Johnson LE, Peters B, Lodge DM (2007) Forecasting the expansion of zebra mussels in the United States. Con Biol 21:800–810

    Article  Google Scholar 

  8. Boudreau SA, Yan ND (2004) Auditing the accuracy of a volunteer-based surveillance program for an aquatic invader Bythotrephes. Environ Monitor Assess 91:17–26

    Article  Google Scholar 

  9. Branstrator DK, Brown ME, Shannon LJ, Thabes M, Heimgartner K (2006) Range expansion of Bythotrephes longimanus in North America: evaluating habitat characteristics in the spread of an exotic invader. Biol Invas 8:1367–1379

    Article  Google Scholar 

  10. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invas 8:1023–1037

    Article  Google Scholar 

  11. Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481–489

    Article  Google Scholar 

  12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39:1–38

    Google Scholar 

  13. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–77

    Article  Google Scholar 

  14. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  15. Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 22:191–202

    PubMed  Article  CAS  Google Scholar 

  16. Forsyth DM, Duncan RP (2001) Propagule size and the relative success of exotic ungulate and bird introductions to New Zealand. Am Nat 157:583–595

    PubMed  Article  CAS  Google Scholar 

  17. Fotheringham AS (1981) Spatial structure and distance-decay parameters. Ann Assoc Am Geogr 71:425–436

    Google Scholar 

  18. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    PubMed  Article  CAS  Google Scholar 

  19. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invas 10:483–506

    Article  Google Scholar 

  20. Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage, Beverly Hills

    Google Scholar 

  21. Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17:663–674

    PubMed  Article  Google Scholar 

  22. Huff DL (1959) Geographical aspects of consumer behavior. U Wash Bus Rev 18:27–37

    Google Scholar 

  23. Jansakul N (2005) Fitting a zero-inflated negative binomial model via R. In: Proceedings of the 20th international Wksh Stat Model, pp 277–284

  24. Jarnagin ST, Swan BK, Kerfoot WC (2000) Fish as vectors in the dispersal of Bythotrephes cederstroemi: diapausing eggs survive passage through the gut. Freshw Biol 43:579–589

    Google Scholar 

  25. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA 102:7198–7202

    PubMed  Article  CAS  Google Scholar 

  26. Johannsson OE, Mills EL, Ogorman R (1991) Changes in the nearshore and offshore zooplankton communities in Lake Ontario—1981–88. Can J Fish Aquat Sci 48:1546–1557

    Article  Google Scholar 

  27. Ketelaars HAM, Gille L (1994) Range extension of the predatory cladoceran Bythotrephes longimanus Leydig 1860 (Crustacea, Onychopoda) in Western Europe. Neth J Aquat Ecol 28:175–180

    Article  Google Scholar 

  28. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    PubMed  Article  Google Scholar 

  29. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    PubMed  Article  CAS  Google Scholar 

  30. Leung B, Delaney DG (2006) Managing sparse data in biological invasions: a simulation study. Ecol Model 198:229–239

    Article  Google Scholar 

  31. Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti GA (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond Ser B 269:2407–2413

    Article  Google Scholar 

  32. Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660

    Article  Google Scholar 

  33. Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions, estimating dispersal potential with gravity models. Biol Invas 8:241–254

    Article  Google Scholar 

  34. Linneman HV (1966) An econometric study of international trade flows. North-Holland, Amsterdam

    Google Scholar 

  35. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  36. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  37. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    PubMed  Article  Google Scholar 

  38. Lockwood JL, Cassey P, Blackburn T (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  39. Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for US policy and management. Ecol Appl 16:2035–2054

    PubMed  Article  Google Scholar 

  40. MacIsaac HJ, Ketelaars HAM, Grigorovich IA, Ramcharan CW, Yan ND (2000) Modeling Bythotrephes longimanus invasions in the Great Lakes basin based on its European distribution. Arch Hydrobiol 149:1–21

    Google Scholar 

  41. MacIsaac HJ, Borbely J, Muirhead JR, Graniero P (2004) Backcasting and forecasting biological invasions of inland lakes. Ecol Appl 14:773–783

    Article  Google Scholar 

  42. McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Article  Google Scholar 

  43. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94

    PubMed  Article  Google Scholar 

  44. Potapov A, Muirhead JR, Lele SR, Lewis MA (2010) Stochastic gravity models for modeling lake invasions. Ecol Model. doi:10.1016/j.ecolmodel.2010.07.024

    Google Scholar 

  45. Richardson DM, Pyšek P, Rejmánek M, Barbour M, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  46. Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    PubMed  Article  Google Scholar 

  47. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    PubMed  Article  CAS  Google Scholar 

  48. Schneider DW, Ellis CD, Cummings KS (1998) A transportation model assessment of the risk to native mussel communities from zebra mussel spread. Conserv Biol 12:788–800

    Article  Google Scholar 

  49. Siderelis C, Moore RL (1998) Recreation demand and the influence of site preference variables. J Leisure Res 30:301–318

    Google Scholar 

  50. Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci 65:1512–1522

    Article  Google Scholar 

  51. Veltman CJ, Nee S, Crawley MJ (1996) Correlates of introduction success in exotic New Zealand birds. Am Nat 147:542–557

    Article  Google Scholar 

  52. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218

    Article  Google Scholar 

  53. Weisz EJ, Yan ND (2010) Relative value of limnological, geographic, and human use variables as predictors of the presence of Bythotrephes longimanus in Canadian Shield lakes. Can J Fish Aquat Sci 67:462–472

    Article  CAS  Google Scholar 

  54. Zipf GK (1946) The P1P2/D hypothesis: on the intercity movement of persons. Am Sociol Rev 11:677–686

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for discussions with M. A. Lewis and A. Potapov, and for financial support from the Canadian Aquatic Invasive Species Network, an OGS scholarship and NSERC postdoctoral fellowship to JRM, and by an NSERC Discovery Grant and a DFO Invasive Species Research Chair to HJM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jim R. Muirhead.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muirhead, J.R., MacIsaac, H.J. Evaluation of stochastic gravity model selection for use in estimating non-indigenous species dispersal and establishment. Biol Invasions 13, 2445 (2011). https://doi.org/10.1007/s10530-011-0070-3

Download citation

Keywords

  • Nonindigenous species
  • Invasive species
  • Biological invasion
  • Stochastic gravity model