Abstract
Predicting dispersal of nonindigenous species (NIS) is an essential component of risk analysis and management, as preventative measures are most readily applied at this stage of the invasion sequence. Gravity models provide one of the most useful techniques available to model dispersal of nonindigenous invasive species (NIS) across heterogeneous landscapes, as these models are able to capture transport patterns of recreational boaters who are dominant vectors responsible for aquatic NIS dispersal. Despite the widespread use of gravity models in forecasting biological invasions, different classes of gravity models have not been evaluated regarding their comparative ability to capture recreational transport patterns and subsequent use in predicting NIS establishment. Here we evaluate model selection between unconstrained, total-flow-constrained, production-constrained and doubly-constrained stochastic gravity models to assess dispersal of the spiny waterflea Bythotrephes between Ontario lakes. Differences between the models relate to the amount of data required and constraints under which calculations of source/destination interactions are made. For each class of gravity model, we then estimated the probability of a lake having established Bythotrephes populations by modeling the relationship between empirical presence/absence data and inbound recreational traffic (i.e. propagule pressure) via boosted regression. The unconstrained gravity model provided the best fit to observed traffic patterns of recreational boaters. However, when output from the gravity models was used to predict Bythotrephes establishment, the doubly-constrained gravity model provided the strongest relationship between inbound recreational traffic and observed Bythotrephes presence/absence, followed by the production-constrained model. Our results indicate production-constrained gravity models offer an acceptable balance between modeling recreational boater traffic and their utility to estimate establishment probabilities.
This is a preview of subscription content, access via your institution.



References
Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232
Anas A (1983) Discrete choice theory, information-theory and the multinomial logit and gravity models. Trans Res B Methodol 17:13–23
Anderson JE (1979) Theoretical foundation for the gravity equation. Am Econ Rev 69:106–116
Black JA, Salter RJ (1975) A statistical evaluation of the accuracy of a family of gravity models. Proc Instit Civil Eng Part 2 Res Theor 59:1–20
Bockstael NE, McConnell KE, Strand IE (1989) A random utility model for sportfishing: some preliminary results for Florida. Mar Res Econ 6:245–260
Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788
Bossenbroek JM, Johnson LE, Peters B, Lodge DM (2007) Forecasting the expansion of zebra mussels in the United States. Con Biol 21:800–810
Boudreau SA, Yan ND (2004) Auditing the accuracy of a volunteer-based surveillance program for an aquatic invader Bythotrephes. Environ Monitor Assess 91:17–26
Branstrator DK, Brown ME, Shannon LJ, Thabes M, Heimgartner K (2006) Range expansion of Bythotrephes longimanus in North America: evaluating habitat characteristics in the spread of an exotic invader. Biol Invas 8:1367–1379
Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invas 8:1023–1037
Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481–489
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39:1–38
Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–77
Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151
Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 22:191–202
Forsyth DM, Duncan RP (2001) Propagule size and the relative success of exotic ungulate and bird introductions to New Zealand. Am Nat 157:583–595
Fotheringham AS (1981) Spatial structure and distance-decay parameters. Ann Assoc Am Geogr 71:425–436
Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17
Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invas 10:483–506
Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage, Beverly Hills
Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17:663–674
Huff DL (1959) Geographical aspects of consumer behavior. U Wash Bus Rev 18:27–37
Jansakul N (2005) Fitting a zero-inflated negative binomial model via R. In: Proceedings of the 20th international Wksh Stat Model, pp 277–284
Jarnagin ST, Swan BK, Kerfoot WC (2000) Fish as vectors in the dispersal of Bythotrephes cederstroemi: diapausing eggs survive passage through the gut. Freshw Biol 43:579–589
Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA 102:7198–7202
Johannsson OE, Mills EL, Ogorman R (1991) Changes in the nearshore and offshore zooplankton communities in Lake Ontario—1981–88. Can J Fish Aquat Sci 48:1546–1557
Ketelaars HAM, Gille L (1994) Range extension of the predatory cladoceran Bythotrephes longimanus Leydig 1860 (Crustacea, Onychopoda) in Western Europe. Neth J Aquat Ecol 28:175–180
Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204
Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236
Leung B, Delaney DG (2006) Managing sparse data in biological invasions: a simulation study. Ecol Model 198:229–239
Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti GA (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond Ser B 269:2407–2413
Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660
Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions, estimating dispersal potential with gravity models. Biol Invas 8:241–254
Linneman HV (1966) An econometric study of international trade flows. North-Holland, Amsterdam
Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393
Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151
Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228
Lockwood JL, Cassey P, Blackburn T (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910
Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for US policy and management. Ecol Appl 16:2035–2054
MacIsaac HJ, Ketelaars HAM, Grigorovich IA, Ramcharan CW, Yan ND (2000) Modeling Bythotrephes longimanus invasions in the Great Lakes basin based on its European distribution. Arch Hydrobiol 149:1–21
MacIsaac HJ, Borbely J, Muirhead JR, Graniero P (2004) Backcasting and forecasting biological invasions of inland lakes. Ecol Appl 14:773–783
McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823
Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94
Potapov A, Muirhead JR, Lele SR, Lewis MA (2010) Stochastic gravity models for modeling lake invasions. Ecol Model. doi:10.1016/j.ecolmodel.2010.07.024
Richardson DM, Pyšek P, Rejmánek M, Barbour M, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107
Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774
Schneider DW, Ellis CD, Cummings KS (1998) A transportation model assessment of the risk to native mussel communities from zebra mussel spread. Conserv Biol 12:788–800
Siderelis C, Moore RL (1998) Recreation demand and the influence of site preference variables. J Leisure Res 30:301–318
Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci 65:1512–1522
Veltman CJ, Nee S, Crawley MJ (1996) Correlates of introduction success in exotic New Zealand birds. Am Nat 147:542–557
Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218
Weisz EJ, Yan ND (2010) Relative value of limnological, geographic, and human use variables as predictors of the presence of Bythotrephes longimanus in Canadian Shield lakes. Can J Fish Aquat Sci 67:462–472
Zipf GK (1946) The P1P2/D hypothesis: on the intercity movement of persons. Am Sociol Rev 11:677–686
Acknowledgments
We are grateful for discussions with M. A. Lewis and A. Potapov, and for financial support from the Canadian Aquatic Invasive Species Network, an OGS scholarship and NSERC postdoctoral fellowship to JRM, and by an NSERC Discovery Grant and a DFO Invasive Species Research Chair to HJM.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muirhead, J.R., MacIsaac, H.J. Evaluation of stochastic gravity model selection for use in estimating non-indigenous species dispersal and establishment. Biol Invasions 13, 2445–2458 (2011). https://doi.org/10.1007/s10530-011-0070-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10530-011-0070-3