Biological Invasions

, 13:2115 | Cite as

Global invasion by Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae): assessing potential distribution in North America and beyond

  • James P. Strange
  • Jonathan B. Koch
  • Victor H. Gonzalez
  • Lindsay Nemelka
  • Terry Griswold
Original Paper


The wool carder bee, Anthidium manicatum, is the most widely distributed unmanaged bee in the world. It was unintentionally introduced to North America in the late 1960s from Europe, and subsequently, into South America, New Zealand and the Canary Islands. We provide information on the local distribution, seasonal abundance and sex ratio of A. manicatum from samples collected in an intensive two-year survey across Utah, USA. Anthidium manicatum was detected in 10 of the 29 Utah counties, largely in urban and suburban settings. Combining presence-only and MaxEnt background data from literature, museum databases and new records from Utah, we constructed three species distribution models to examine the potential distribution of A. manicatum in its native Eurasian range as well as invaded ranges of North and South America. The A. manicatum model based on locality and background data from the species’ native range predicted 50% of the invasive records associated with high habitat suitability (HS ≥ 0.90). The invasive North American model predicted a much broader distribution of A. manicatum (214% increase); whereas, the South American model predicted a narrower distribution (88% decrease). The poor predictive power of the latter model in estimating suitable habitats in the invasive South American range of A. manicatum suggests that the bee may still be limited by the bioclimatic constraints associated with a novel environment. Estimates of niche similarity (D) between the native and invasive models find that the North America bioclimatic niche is more similar to the bioclimatic niche of the native model (D = 0.78), whereas the bioclimatic niche of the South America invasion is relatively dissimilar (D = 0.69). We discuss the naturalization of A. manicatum in North America, possibly through punctuated dispersal, the probability of suitable habitats across the globe and the synanthropy exhibited by this invasive species.


Anthidium manicatum Invasion dynamics Species distribution modeling Synanthropy MaxEnt background data 


  1. Ascher JS, Pickering J (2011) Discover life. Anthidium + manicatum. Accessed 2 Mar 2010
  2. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Invasions 4:585–589Google Scholar
  3. Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington DC, p 292Google Scholar
  4. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141CrossRefGoogle Scholar
  5. Colla SR, Otterstater MC, Gegear RJ, Thompson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Invasions 129:461–467Google Scholar
  6. Comba L, Corbet SA, Hunt L, Warren B (1999) Flowers, nectar and insect visits: evaluating British plant species for pollinator-friendly gardens. Ann Bot 83:369–383CrossRefGoogle Scholar
  7. Corbet SA, Bee J, Dasmahapatra K, Gale S, Gorringe E, La Ferla B, Moorhouse T, Trevail A, Van Bergen Y, Vorontsova M (2001) Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann Bot 87:219–232CrossRefGoogle Scholar
  8. Davis MA, Thompson K (2000) Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. ESA Bull 81:226–230Google Scholar
  9. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  10. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  11. ESRI (2008) ArcGIS 9.3. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  12. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 28:38–49CrossRefGoogle Scholar
  13. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecol Biogeogr 16:24–33CrossRefGoogle Scholar
  14. Gibbs J, Sheffield CS (2009) Rapid range expansion of the wool-carder bee, Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae), in North America. J Kans Entomol Soc 82:21–29CrossRefGoogle Scholar
  15. Goka K, Okabe K, Yoneda M, Niwa S (2001) Bumblebee commercialization will cause worldwide migration of parasitic mites. Mol Ecol 10:2095–2099PubMedCrossRefGoogle Scholar
  16. Gonzalez VH, Koch JB, Griswold T (2010) Anthidium vigintiduopunctatum Friese (Hymenoptera: Megachilidae): the ellusive “dwarf bee” of the Galápagos Archipelago? Biol Invasions 12(8):2381–2383. doi:10.1007/s10530-009-9651-9 CrossRefGoogle Scholar
  17. Goulson D (2003) Effects of introduced bees on native ecosystems. Ann Rev Ecol Evol Syst 34:1–26CrossRefGoogle Scholar
  18. Goulson D (2004) Keeping bees in their place: impacts of bees outside their native ranges. Bee World 85:45–46Google Scholar
  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. Available at Google Scholar
  20. Hoebeke ER, Wheeler AG (2005) First records of adventive Hymenoptera (Argidae, Megachilidae, Tenthredinidae, and Vespidae) from the Canadian maritimes and the US. Entomol News 116:159–166Google Scholar
  21. Jaycox ER (1967) An adventive Anthidium in New York State (Hymenoptera: Megachilidae). J Kans Entomol Soc 40:124–126Google Scholar
  22. Kurtak BH (1973) Aspects of the biology of the European bee Anthidium manicatum (Hymeoptera: Megachilidae) in New York state. MS thesis. Cornell UniversityGoogle Scholar
  23. Maier CT (2005) First records of alien insects in Connecticut (Orthoptera : Tettigoniidae; Coleoptera : Buprestidae, Chrysomelidae; Diptera : Rhagionidae, Tephritidae; Hymenoptera : Megachilidae). P Entomol Soc Wash 107:947–959Google Scholar
  24. Matteson KC, Ascher JS, Langellotto GS (2008) Bee richness and abundance in New York City urban gardens. Ann Entomol Soc Am 101:140–150CrossRefGoogle Scholar
  25. Miller SR, Gaebel R, Mitchell RJ, Arduser M (2002) Occurrence of two species of old world bees, A. manicatum and A. oblongatum (Apoidea : Megachilidae), in Northern Ohio and Southern Michigan. Gt. Lakes Entomol 35:65–69Google Scholar
  26. Müller A, Topfl W, Amiet F (1996) Collection of extrafloral trichome secretions for nest wool impregnation in the solitary bee Anthidium manicatum. Naturwissenschaften 83:230–232Google Scholar
  27. Pechuman LL (1967) Observations on the behavior of the bee Anthidium manicatum (L.). J N Y Entomol S 75:68–73Google Scholar
  28. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distribution. Ecol Model 190:231–259CrossRefGoogle Scholar
  29. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197PubMedCrossRefGoogle Scholar
  30. R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  31. Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18:674–687CrossRefGoogle Scholar
  32. Roubik DW (1980) Foraging behavior of competing Africanized honeybees and stingless bees. Ecology 61:836–845CrossRefGoogle Scholar
  33. Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR (2007) Invasion success of the bumblebee, B. terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422PubMedCrossRefGoogle Scholar
  34. Severinghaus LL, Kurtak BH, Eickwort GC (1981) The reproductive behavior of Anthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males. Behav Ecol Sociobol 9:51–58CrossRefGoogle Scholar
  35. Smith IP (1991) Anthidium manicatum (Hymenoptera, Megachilidae): an interesting new Canadian record. P Entomol Soc Ont 122:105–108Google Scholar
  36. Spatial Ecology LLC (2010) Geospatial modelling environment v0.4.0 BetaGoogle Scholar
  37. Steiner FM, Schlick-Steiner BC, VanDerWal J, Reuther KD, Christian E, Stauffer C, Suarez AV, Williams SE, Crozier RH (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545CrossRefGoogle Scholar
  38. Tonietto RK, Ascher JS (2008) Occurrence of the old world bee species Hylaeus hyalinatus, Anthidium manicatum, A. oblongatum, and M. sculpturalis, and the native species Coelioxys banksi, Lasioglossum michiganense, and L. zophops in Illinois (Hymenoptera: Apoidea: Colletidae, Halictidae, Megachilidae). Gt. Lakes Entomol 4:200–203Google Scholar
  39. US NPID (2011) US National pollinating insects database. US Department of Agriculture, Agriculture Research Service, Pollinating Insects- Biology, Management, and Systematics Laboratory, Logan, Utah. Accessed 03 Jan 2011Google Scholar
  40. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299CrossRefGoogle Scholar
  41. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62–11:2868–2883CrossRefGoogle Scholar
  42. Wirtz P, Szabados M, Pethig H, Plant J (1988) An extreme case of interspecific territoriality: male Anthidium manicatum (Hymenoptera, Megachilidae) wound and kill intruders. Ethology 78:159–167CrossRefGoogle Scholar
  43. Wirtz P, Kopka S, Schmoll G (1992) Phenology of two territorial solitary bees: Anthidium manicatum and A. florentinum (Hymenoptera: Megachilidae). J Zool 228:641–651CrossRefGoogle Scholar
  44. Wu YR (2005) Fauna Sinica. Insecta. Hymenoptera Megachilidae, vol 44. Science Press, Beijing, p 474Google Scholar
  45. Zavortink TJ, Shanks SS (2008) Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae) in California. Pan-Pac Entomol 84:238–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • James P. Strange
    • 1
  • Jonathan B. Koch
    • 1
    • 2
  • Victor H. Gonzalez
    • 1
  • Lindsay Nemelka
    • 2
  • Terry Griswold
    • 1
  1. 1.USDA-ARS Pollinating Insects - Biology, Management and Systematics LaboratoryUtah State UniversityLoganUSA
  2. 2.Biology DepartmentUtah State UniversityLoganUSA

Personalised recommendations